Vinylic Cations from Solvolysis. XX. ${ }^{1,2}$ Ion Pairs and Free Ions in the Solvolysis and Isomerization of 1,2-Dianisyl-2-phenylvinyl Halides and Mesylates. Use of Cis-Trans Isomerization as a Mechanistic Tool

Zvi Rappoport* and Yitzhak Apeloig
Contribution from the Department of Organic Chemistry, The Hebrew University, Jerusalem, Israel. Received December 3, 1973

Abstract

The acetolysis of cis- and trans-1,2-dianisyl-2-phenylvinyl bromides ($\mathbf{5 - B r}$ and $\mathbf{6 - B r}$) and the cis chloride (5-Cl) in unbuffered and buffered AcOH shows strong common ion rate depression within a run, or by added halide ion; $>93 \%$ of the products arises from the "dissociated" ion 7. The products are 54% of the cis and 46% of the trans acetates (5-OAc and 6OAc). Methods for evaluating the extrapolated titrimetric rate constants $k_{i}{ }^{0}$ and the apparent selectivity constant $\alpha_{\text {app }}$ of 7 are discussed. Capture of 7 by Cl^{-}gives a $1: 1$ mixture of $5-\mathrm{Cl}$ and $6-\mathrm{Cl}$. These reactions are accompanied by extensive cistrans isomerization of the unreacted halide, which is the main process in the presence of external halide ion. A mechanism involving the ion pair 8 which gives internal return with isomerization and 7 which gives either external ion return with isomerization or solvolysis products fits the data and is verified by a simulation method: 8 from $\mathbf{5 - B r}$ gives 25.4% of $\mathbf{5 - B r}, 22 \%$ of $6-\mathrm{Br}$, and 52.6% of 7 . The ionization rate constant $k_{\text {ion }}$ and the true selectivity constant α of 7 were evaluated by several methods. Both solvolysis and isomerization are accelerated by AgOAc , but only the isomerization is appreciably accelerated by LiClO_{4}. Acetolysis of the corresponding mesylates $5-\mathrm{OMs}$ and $6-\mathrm{OMs}$ shows external ion return by OMs^{-}, and the ion pair 16 gives 13.6% of $5-\mathrm{OMs}, 10.4 \%$ of $6-\mathrm{OMs}$, and 76% of $\mathbf{7}$. Nonheterolytic isomerization routes were excluded by using ;everal criteria. Reasons for the high selectivity of the cationic species vs. the sluggish reactivity of their precursors and the similar reactivity order of the anions $\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{OMs}^{-}$in both internal and external ion return are discussed. The use of k_{1} (or $k_{1}{ }^{0}$) as a measure of $k_{\text {ion }}$ in vinylic systems was evaluated.

An important development in the study of solvolysis reactions is the recognition that more than one cationic species is involved in many of these reactions. ${ }^{3}$ Winstein's extended mechanistic scheme involves the covalent RX, an intimate ion pair $\mathrm{R}^{+} \mathrm{X}^{-}$, a solvent-separated ion pair $\mathrm{R}^{+} \| \mathrm{X}^{-}$, and the "dissociated" cation R^{+}, all or some of which may give solvolysis products. ${ }^{3,4}$ Methods for estimating the extent of ion pairing include the "special salt effect" $4 \mathrm{~b}, 5$ and the comparison of the rate of product formation (k_{t}) with those of other processes presumably connected with the ionization. These include the loss of optical activity (k_{α} or k_{rac}), ${ }^{3,6}$ the concurrent rearrangement in either $\mathrm{R}^{3,7 \mathrm{a}}$ or $\mathrm{X}, .^{3.7 \mathrm{~b}}$ and the oxygen equilibration in a leaving group which carries several oxygen atoms. ${ }^{3,8}$ Dissociated (free) carbonium ions are recognized by the appearance of common ion rate depression by the common ion X^{-}or by exchange of X in RX by labeled $\mathrm{X}^{-} .{ }^{4, \mathrm{c}}$

Information regarding the nature of cationic intermediates in vinylic solvolysis ${ }^{9}$ is scarce. Product formation from dissociated ions is evident from common ion rate depression in the solvolysis of several α-arylvinyl systems where $\mathrm{X}=$ $\mathrm{Cl}^{10,11} \mathrm{Br},{ }^{9}, 10 \mathrm{c}, 12-14 \mathrm{I},{ }^{15} 2,4,6-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OSO}_{2},{ }^{16}$ and OTs ${ }^{146.17}$ in solvents such as AcOH, $, 10 \mathrm{a}, \mathrm{c} .12 \mathrm{AcOH}-$ HCOOH mixtures, ${ }^{2 \mathrm{c}}$ aqueous $\mathrm{EtOH},{ }^{10 b, 11}$ acetone, ${ }^{16 \mathrm{~b}}$ aqueous acetone, ${ }^{11,17}$ aqueous DMF, ${ }^{15}$ and 2,2,2-trifluoroethanol (TFE). ${ }^{14}$

Ion pairs were invoked to explain the predominant inversion in the solvolysis of several vinyl triflates, ${ }^{18,19}$ the faster elimination from trans-1,2-dimethylvinyl triflate with NaOH than in neutral solution, ${ }^{18 \mathrm{c}}$ the smaller substituent effects in the solvolysis of acyclic vinyl triflates compared with 1-cyclohexenyl triflate, ${ }^{18 \mathrm{c}}$ the small amount of cistrans interconversion of 1-cyclopropyl-1-iodopropenes with AgOAc in AcOH^{20} and of cis- α-bromoanethole in 80% $\mathrm{EtOH},{ }^{21}$ the products in the photochemical decomposition of β-acyloxydiazoalkenes, ${ }^{22}$ and the increase in k during a run in the acetolysis of 2-methyl-3,4-pentadien-1-yl tosylate. ${ }^{23}$ The acetolysis of 2-phenylthio-1,2-ditolyl 2,4,6-trinitrobenzenesulfonate showed a LiClO_{4} "special salt effect"
suggesting the presence of solvent-separated ion pair. ${ }^{16}$
Except for the latter example and an attempt to use the stereochemistry of the solvolysis as a tool for estimating the extent of ion pairing, ${ }^{18 \mathrm{c}}$ no quantitative data on the distribution of the various cationic species are available. Estimation of the internal return from the k_{α} / k_{t} ratios is possible in principle with optically active vinylic systems, ${ }^{24}$ but this method was not yet reported and is not generally applicable.

We suggested ${ }^{2}$ that a cis-trans isomerization concurrent with the solvolysis could be used as a general tool ${ }^{25}$ for investigating vinyl cation formation and the intervention of ion pairs. The essence of this method is the following. The first intermediate in the heterolysis of the vinyl halide $1-E$ is the ion pair $2-E^{26}$ which can enter into four reaction sequences (Scheme I): (a) a hidden return to covalent 1-E; (b) product (4) formation; (c) dissociation to the free ion 3 , which may return to $2-E$ or $2-Z$, give the product 4 , or be recaptured by the leaving group giving both $1-E$ and $1-Z$; (d) internal rotation to give the isomeric ion pair 2-Z which on recombination gives $\mathbf{1 - Z}$. By following the concurrent $1-E \rightleftharpoons 1-Z$ isomerization and product formation from both isomers, ion pairs could be detected, and the distribution of the intermediates among the various routes could be determined. For example, the stereochemical evidence for ion pairing is explained in terms of a faster solvent capture of either 2-E or 2-Z from the rear, as compared with their mutual interconversion.

There are considerable differences between the $d \rightarrow l$ racemization used with saturated substrates and the cis \rightarrow trans isomerization as mechanistic tools. The solvolysis rates of $d-\mathrm{RX}$ and $l-\mathrm{RX}$ are identical, and capture of the symmetrical trigonal free ion by a nucleophile will always lead to racemized products. On the other hand, the solvolysis rates of $\mathbf{1 - E}$ and $\mathbf{1 - Z}$ may differ greatly, ${ }^{12,21.27}$ and when $R^{2} \neq R^{3}$, the ion $\mathbf{3}$ is unsymmetrical from the direction of approach of the nucleophile and is captured preferentially from its less hindered side. Since $\mathbf{3}$ is formed from both $1-E$ and $1-Z$, excess retention will be found for one isomer and excess inversion for the other. Moreover, nonsol-

Scheme I

volytic addition-elimination isomerization routes are available for the vinylic but not for the saturated substrates.

A relatively simple case will be when $1-E$ and $1-Z$ react with similar rates, and where capture from both sides of the cationic orbital has similar probability. The study of one such system, (E) - and (Z)- α-bromo- β-deuterio- p-methoxystyrenes, is discussed elsewhere. ${ }^{28}$ In the present paper, we discuss the 1,2 -dianisyl-2-phenylvinyl system, ${ }^{29}$ where the intermediate is known to be captured by different nucleophiles, ${ }^{29}$ and the two β substituents are sufficiently similar to ensure similar solvolysis rates for both isomers and similar capture rates from both sides of the cation. Moreover, the common ion rate depression, which was observed with structurally related compounds, ${ }^{11-17}$ suggests that isomerization by capture of the free cation should be mandatory in this system.

Results and Discussion

Synthesis. The preparation and separation of cis- and trans-1,2-dianisyl-2-phenylvinyl bromides ($5-\mathrm{Br}$ and $6-\mathrm{Br}$), chlorides ($5-\mathrm{Cl}$ and $6-\mathrm{Cl}$), and acetates ($5-\mathrm{OAc}$ and $6-$ OAc) were described previously. ${ }^{29}$ Careful determination of the cis-trans equilibrium distribution in AcOH at 120° gave the same $5: 6$ composition of $54: 46$ for the bromides, acetates, and chlorides. ${ }^{30}$ These results modify somewhat earlier reported values. ${ }^{29,31}$ Reaction of an equilibrium mixture of $5-\mathrm{Br}$ and $6-\mathrm{Br}$ with 1.1 equiv of silver tosylate or silver mesylate in acetonitrile gave products indicated both to be $54: 46$ cis-trans mixtures by nmr integration. $\mathbf{5 - O M 4 s}$ and 6-OMs could be separated by recrystallization. Stereochemical assignment was made in analogy with the corresponding bromides and acetates, ${ }^{29}$ by assuming that the isomer with the lower field methoxyl and methyl and the higher field phenyl signals was trans-6-OMs. This assignment was consistent with the general observation that cis isomers predominate at equilibrium.

Acetolysis of $5-\mathrm{Br}$ and $\mathbf{6 - B r}$ in Unbuffered AcOH . Vinylic solvolysis of RX in a buffered solvent avoids substitution via addition-elimination of the liberated HX to the double bond of RX. ${ }^{10 \mathrm{~b}, 32}$ However, in connection with the question whether the vinyl cation is captured by AcO^{-}or AcOH , we acetolyzed $0.044 M 5-\mathrm{Br}$ at 120.3° in unbuffered AcOH and found that the initial reaction is slower than that with $\mathrm{NaOAc}: 10^{6} k_{1}=3.47$ and $3.07 \mathrm{sec}^{-1}$ after 530 and 1200 min . After 9 and 12 hr , the residual RBr is 92.5 and 100% isomerized, respectively. However, the reaction mixture blackens after longer reaction times, and only 7% of Br^{-}
was titrated after 48 hr , when the ir showed signals at 1762 (AcO, s) and $1705(\mathrm{C}=\mathrm{O}, \mathrm{w}) \mathrm{cm}^{-1} .{ }^{33}$

Common ion rate depression was demonstrated by the $10^{5} k_{1}$ values of 5.0 and $1.63 \mathrm{sec}^{-1}$ at 120.3°, in the solvolysis of $0.087 \mathrm{M} 5-\mathrm{Br}$ after 20 hr with and without 0.087 M $\mathrm{Et}_{4} \mathrm{NBr}$, which gives a selectivity value $\alpha\left(=k_{\mathrm{Br}} / k_{\mathrm{AcOH}}\right)=$ 24.

Exactly the same behavior was observed in the acetolysis of $5-\mathrm{Br}$ when 0.087 M urea was used as the nonnucleophilic buffer. ${ }^{34}$

Acetolysis of $5-\mathrm{Br}, 6-\mathrm{Br}$, and $5-\mathrm{Cl}$ in Buffered AcOH . Dissociated Cations. Acetolysis of $5-\mathrm{Br}, \mathbf{6 - B r}$, and $5-\mathrm{Cl}$ in the presence of NaOAc gives 100% of the acetates $5-\mathrm{OAc}$ and $6-\mathrm{OAc}$ in a $54: 46$ ratio. We did not acetolyze $6-\mathrm{Cl}$ which was difficult to obtain in a pure form. The titrimetric rate constant $k_{\text {, (eq }}$) decreases strongly with the progress

$$
\begin{equation*}
k_{t}=(2.3 / t) \log [a /(a-x)] \tag{1}
\end{equation*}
$$

of the reaction due to common ion rate depression by the formed halide ion; k_{t} at 75% reaction is $12-20 \%$ of the initial value ($k_{t}{ }^{0}$) (Table I). The concurrent cis-trans isomerization which was monitored by ir gave the equilibrium mixture of $54 \% 5-\mathrm{Br}$ (or $5-\mathrm{Cl}$) to 46% of $6-\mathrm{Br}$ (or $\mathbf{6 - C l}$) during the acetolysis, starting from either halide.

Appearance of common ion rate depression ${ }^{35}$ is the operative definition for the occurrence of "dissociated" ("free") cations. ${ }^{4 a}$ The common ion rate depression and the isomerization can be explained by the simple mechanistic Scheme II. where both $5-\mathrm{Br}$ and $6-\mathrm{Br}$ give the same linear "free" cation 7. ${ }^{36}$ As shown in a stereochemical study, ${ }^{29}$ the approaches of Br^{-}to both lobes of the cationic orbital of 7 have similar probabilities since the steric and electronic environments at these both sides are similar. Hence, the external Br^{-}return will lead to a cis-trans isomerization of the recovered bromide.
Scheme II

We use rate constants with subscripts to define the process measured (ion, ionization; Br , capture by Br^{-}; SOH , capture by the solvent or its conjugate base; OAc, capture by OAc^{-}, etc.,) and with superscripts to designate the reacting species. The formation of $5-\mathrm{OAc}$ and $6-\mathrm{OAc}$ was presented as irreversible since no RBr was formed from 5OAc and $\mathrm{Bu}_{4} \mathrm{NBr}$ after 150 hr at $120^{\circ} .{ }^{29}$

Scheme II requires that (a) almost all the products arise from free cations, and that (b) the extent of isomerization by capture of 7 should match that predicted from the com-

Table I. Solvolysis and Isomerization of 5-Br and 6-Br in $\mathrm{AcOH}-\mathrm{NaOAc}$ at $120.3^{\circ}{ }^{\circ}$

Time, min	0	40	70	110	200	280	410	900	2155	4200	16,800
$5-\mathrm{Br}$											
\% solvolysis ${ }^{\text {b }}$	0	6.7	9.9	13.3		23.6	29.4	41.3	60.8	75.6	97.2
$10^{6} k_{\text {t, }} \mathrm{sec}^{-1}$	$40.6{ }^{\text {c }}$	28.9	24.8	21.6		16.0	14.2	9.9	7.3	5.6	
$\%$ cis bromide ${ }^{\text {d }}$	100	95.2	91.3	86.7		70.5	63.6	56.3	54	54	
\% isomerization ${ }^{\text {e }}$	0	10.4	18.9	28.9		64.1	79.1	94.9	100	100	
$10^{6} k_{\text {isom, }}, \mathrm{sec}^{-1}$,		45.8	49.9	51.7		61.2	63.8	95.0			
$10^{6} k_{\text {ion }}, \mathrm{sec}^{-1 /}$		74.7	74.7	73.3		77.2	78.0				
$6-\mathrm{Br}$											
\% solvolysis ${ }^{\text {b }}$	0	6.8	10.1	13.7	19.4	24.0		42.1	61.3	75.8	97
$10^{6} \mathrm{k}_{t}, \mathrm{sec}^{-1}$	$40.8{ }^{\text {c }}$	29.3	25.3	22.3	18.0	16.3		10.1	7.3	5.6	
\% cis bromide ${ }^{\text {d }}$	0	6.0	10.5	17.0	26.7	34.9		54	54	54	
\% isomerizatione	0	11.1	19.4	31.4	49.4	64.6		100	100	100	
$10^{8} k_{\text {isom, }}, \mathrm{sec}^{-1}$		49.0	51.5	57.1	56.8	61.8					
$10^{6} k_{\text {ion }}, \sec ^{-1 j}$		78.3	76.8	79.4	74.8	78.1					

${ }^{a}[\mathrm{RBr}]=0.044 \mathrm{M},[\mathrm{NaOAc}]=0.087 \mathrm{M} .{ }^{b}$ From titration. ${ }^{c}$ Extrapolated value. ${ }^{d}$ In the unreacted vinyl halide fraction. ${ }^{e}$ Based on the equilibrium ratio of $54(5-\mathrm{Br}): 46(6-\mathrm{Br}) .{ }^{\text {/ }}$ Calculated by using eq 17.
mon ion rate depression. Common ion rate depression as extensive as ours is rare in saturated systems, and since we found no precedent for calculations, we will first discuss in some detail our method to obtain the required kinetic parameters.

For applying the steady-state approximation to Scheme II, it is essential to know whether AcOH or AcO^{-}captures 7. We believe that most of the capture is by AcO^{-}for the following reasons. (i) The initial k_{t} 's in AcOH are $8-12$ times lower than those in the presence of 0.087 M NaOAc . The faster isomerization shows that ion return is more important in the unbuffered $\mathrm{AcOH} .{ }^{37}$ (ii) The solvolysis is slower at lower [NaOAc] than at higher concentrations. (iii) Common ion rate depression is more extensive in unbuffered compared with buffered AcOH . (iv) The simulation method, discussed below, gives a better fit for OAc^{-}as the capturing nucleophile.

When the second-order $k_{\text {OAc }}$ replaces $k_{\text {SOH }}$ in Scheme II, the rate of formation of $5-\mathrm{OAc}$ and $6-\mathrm{OAc}$ (d[ROAc]/ $\mathrm{d} t$) from either $5-\mathrm{Br}$ or $6-\mathrm{Br}$ is given by eq 2 , where the apparent selectivity factor for capture of 7 by $\mathrm{Br}^{-} v s$. capture by $\mathrm{OAc}^{-}, \alpha_{\mathrm{app}}$, is defined by eq 3 (the term "apparent" is justified below). While the two $k_{\text {ion }}$ values could in princi-

$$
\begin{gather*}
\frac{\mathrm{d}[\mathrm{ROAc}]}{\mathrm{d} t}=\frac{k^{5-\mathrm{Br}} \mathrm{ion}[5-\mathrm{Br}]+k^{6-\mathrm{Br}}{ }_{\mathrm{ion}}[6-\mathrm{Br}]}{1+\alpha_{\mathrm{app}}\left[\mathrm{Br}^{-}\right] /\left[\mathrm{OAc}^{-}\right]} \tag{2}\\
\alpha_{\mathrm{app}}=\left(k_{\mathrm{Br}}^{7}+k_{\mathrm{Br}^{\prime}}\right) / k_{\mathrm{OAC}}^{7} \tag{3}
\end{gather*}
$$

ple be obtained from reaction at very low [RX] when [Br^{-}] ~ 0 and $k_{t}=k_{\text {ion }}$, this was not possible at our conditions (see below). Fortunately, the similarity of the [ROAc] vs. time profiles for $5-\mathrm{Br}$ and $6-\mathrm{Br}$ suggested that $k^{5-\mathrm{Br}}$ ion \sim $k^{6-\mathrm{Br}}$ ion, and therefore eq 4 for $5-\mathrm{Br}$ and a similar one for 6- Br are good approximations for eq 2 .

$$
\begin{align*}
& \mathrm{d}[\mathrm{ROAc}] / \mathrm{d} t=k_{\mathrm{ion}}([5-\mathrm{Br}]+[6-\mathrm{Br}]) / \\
& \alpha_{\mathrm{app}}[1+ \tag{4}\\
&\left.\left.\mathrm{Br}^{-}\right] /\left[\mathrm{OAc}^{-}\right]\right)
\end{align*}
$$

We first tried to evaluate $k_{\text {ion }}$ and $\alpha_{\text {app }}$ from the instantaneous rate constant $k_{\text {ins }}$ (eq 5) since combination of eq 4

$$
\begin{gather*}
(\mathrm{d}[\mathrm{ROAc}] / \mathrm{d} t) /([5-\mathrm{Br}]+[6-\mathrm{Br}])=k_{\mathrm{ins}} \tag{5}\\
1 / k_{\mathrm{ins}}=1 / k_{\mathrm{ion}}+\left(\alpha_{\text {app }} / k_{\mathrm{ion}}\right)\left[\mathrm{Br}^{-}\right] /\left[\mathrm{OAc}^{-}\right] \tag{6}
\end{gather*}
$$

and 5 give eq 6 . Winstein and coworkers ${ }^{4 \mathrm{a}, 38}$ calculated $k_{\text {ins }}$ from the tangent $\mathrm{d}[\mathrm{ROAc}] / \mathrm{d} t$ at each [RX] from largescale plots of [product] vs. time. However, in our system the curvatures of the "per cent reaction" vs. time plots were much higher than those of Winstein, et al., ${ }^{38}$ and the esti-
mation of the tangents was unreliable up to $>50 \%$ reaction. We then evaluated $k_{1}{ }^{0}$ by three other methods, two of which also gave $\alpha_{\text {app }}$.
(a) The smooth curve of the integrated k_{l} vs. time plot was graphically extrapolated to $t=0$ (Figure 1) giving $k_{1}{ }^{0}$ when $\left[\mathrm{Br}^{-}\right]=0$. Attempts to use a nonlinear least-squares program (NONLSQ) for extrapolation failed since $k_{\text {ion }}$ and α_{app} are correlated.
(b) We found for several solvolyses of α-arylvinyl halides which show common ion rate depression ${ }^{10 c}$ that insertion of the integrated "constant" k_{l} of eq 1 instead of $k_{\text {ins }}$ in eq 6 resulted in a linear $1 / k, v s$. $\left[\mathrm{Br}^{-}\right] /\left[\mathrm{OAc}^{-}\right]$plot (Figure 2). $k_{\text {ion }}$ and $\alpha_{\text {app }}$ were calculated from the intercept and the slope, respectively (see note 46).
(c) Integration of eq 4 by assuming that $k^{5-\mathrm{Br}_{i o n}}=$ $k^{6-\mathrm{Br}_{\text {ion }}}$ gave eq 7, where $a_{0}=[\mathrm{RX}]_{0}=([5-\mathrm{Br}]+[6-\mathrm{Br}])_{0}$, $x=\left[\mathrm{X}^{-}\right]_{l}$, and $n=\left[\mathrm{OAc}^{-}\right]_{0} /[\mathrm{RX}]_{0}$. Combination of eq 1 and 7 gave eq 8 , where the second term on the right de-

$$
\begin{align*}
& k_{\text {ion }} t= \ln [a /(a-x)]-\left[\alpha_{\text {app }} /(1-n)\right] \times \\
& \ln [a /(a-x)]+\left[n \alpha_{\text {app }} /(1-n)\right] \ln [n a /(n a-x)] \tag{7}\\
& 1 / k_{t}= 1 / k_{\text {ion }}+\left[\alpha_{\text {app }} / k_{\text {oin }}(1-n)\right] \times \\
& {[(n \ln (n a /(n a-x)) / \ln (a /(a-x))-1]} \tag{8}
\end{align*}
$$

scribes the change of k_{l} due to common ion rate depression. A plot of $1 / k, v s$. the expression in the parentheses should be linear with intercept of $1 / k_{\text {ion }}$ and a slope of $\alpha_{\text {app }} / k_{\text {ion }}$, and we applied a computer program (SHAI) which searches the best $k_{\text {ion }}$ and $\alpha_{\text {app }}$, and these are given in Table II. Since $\alpha_{\text {app }}=k_{\text {ion }}$ (slope), the error in $\alpha_{\text {app }}$ includes both the error in the slope and in $k_{\text {ion. }}{ }^{39}$

Table II shows that methods a-c give very close $k_{1}{ }^{0}$ values, while the $\alpha_{\text {app }}$'s of method c are higher than those of method $\mathrm{b} .{ }^{40}$ Since the α_{app} 's of method c are in good agreement with those of the simulation method (see below), they are used in the discussion.

Salt effects on $k_{\text {ion }}$ or k_{1} were so far neglected. The constant "ionic strength," when NaBr replaces NaOAc during the reaction, is meaningless at our salt concentrations in the low-dielectric AcOH , and specific salt effects ${ }^{41}$ may be important. However, our comparisons are valid; since the extrapolated $k_{t}{ }^{0}$ should not be affected, most of our reactions were conducted at identical total salt concentrations, and the isomerization and solvolysis rates were compared in the same medium.

Table III gives data on the solvolysis in the presence of added salts. According to the theory of common ion rate depression, ${ }^{4 a}$ the percentage of products from dissociated cat-

Table II. $k_{t}{ }^{0}$ and $\alpha_{\text {app }}$ Values for the Acetolysis of $5-\mathrm{Br}, 6-\mathrm{Br}$, and 5-Cl, as Obtained by Various Procedures

Compd ${ }^{\text {a }}$	Solvent	T, ${ }^{\circ} \mathrm{C}$	$\ldots 10^{5} k^{0}, \mathrm{sec}^{-1}$, from procedure			$\cdots \alpha_{\text {app }}$ from procedure --		
			a	b	c	b	c	tion
5-Br	AcOH	120.3	4.10	4.06 ± 0.12	4.02 ± 0.11	11.9 ± 0.6	23.3 ± 1.0	21.3
$5-\mathrm{Br}$	AcOH	140.2	28.0	30.0 ± 2.9	29.4 ± 3.0	12.1 ± 2.1	23.2 ± 4.5	20.4
$5-\mathrm{Br}^{\text {b }}$	AcOH	120.3	5.45	5.13 ± 0.07	4.79 ± 0.09	27.2 ± 0.9	40.4 ± 2.1	41.2
$5-\mathrm{Br}$	AcOD	120.3	3.55	2.99 ± 0.07	2.99 ± 0.07	9.84 ± 0.52	19.6 ± 1.1	21.6
$6-\mathrm{Br}$	AcOH	120.3	4.22	4.08 ± 0.11	4.04 ± 0.10	11.4 ± 0.50	22.2 ± 0.9	21.3
$6-\mathrm{Br}$	AcOH	140.2	30.0	33.7 ± 3.2	32.8 ± 3.2	12.7 ± 2.1	24.2 ± 4.3	21.3
$5-\mathrm{Cl}$	AcOH	120.3	0.191	0.173 ± 0.018	0.168 ± 0.018	3.0 ± 0.5	5.5 ± 1.1	5.7
5-Cl	AcOH	140.2	1.19	1.25 ± 0.12	1.16 ± 0.12	2.6 ± 0.5	4.2 ± 1.0	4.9
5-Cl	AcOH	158.5	5.35	5.52 ± 0.12	5.40 ± 0.17	2.6 ± 0.1	4.8 ± 0.3	5.0
5-Cl	AcOD	158.5	4.95	4.90 ± 0.21	4.78 ± 0.24	2.4 ± 0.2	4.3 ± 0.5	4.9

${ }^{a}[\mathrm{RX}]=0.044 \mathrm{M} ;[\mathrm{NaOAc}]=0.087 \mathrm{M}$ unless otherwise stated. ${ }^{\mathrm{b}}[\mathrm{RX}]=0.0044 \mathrm{M}$.

Figure 1. Plot of $k_{\text {: }}$ of eq 1 vs , the percentage of the acetolysis reaction of $0.044 \mathrm{M} \mathrm{5-Br}$ in the presence of 0.087 M NaOAc in AcOH at 120.3°. Extrapolation gives $k_{:}^{0}=4.1 \times 10^{-5} \mathrm{sec}^{-1}$.
ions is given by $100\left[1-\left(k_{\mathrm{d}} / k_{t}{ }^{0}\right)\right.$] where k_{d} is the depressed rate constant in the presence of added X^{-}. From the data of Table III for solvolysis for 48 hr in the presence of $\mathrm{Bu}_{4} \mathrm{NBr}, 10^{6} k_{\mathrm{d}}=3.1 \mathrm{sec}^{-1}$ at 120.3°. Hence $>93 \%$ of the ROAc arises from 7, and correction for salt effect on $k_{1}{ }^{0}$ by using a "normal" salt effect ${ }^{4,41}$ constant $b=3.5$ (see below) raises the value to $>94 \%$. Similar behavior was found with other α-anisyl- β, β-disubstituted vinyl cations in $\mathrm{AcOH},{ }^{10 \mathrm{a}, \mathrm{c}} \mathrm{TFE},{ }^{14}$ and aqueous acetone. ${ }^{17}$

As a measure of the isomerization of the unreacted vinyl halide, we define an "isomerization rate coefficient k isom" as exemplified by eq 9 for $5-\mathrm{Br}$, where ($\% 6-\mathrm{Br})_{t}$ and (\% 6-

$$
\begin{array}{r}
k^{j-\mathrm{Br}}{ }_{\text {isom }}=(2.3 / t) \log (\% 6-\mathrm{Br})_{\infty} /[\% 6-\mathrm{Br})_{\infty}- \\
\left.(\% 6-\mathrm{Br})_{t}\right] \tag{9}
\end{array}
$$

$\mathrm{Br})_{\infty}$ refer to the percentages of $6-\mathrm{Br}$ in the RBr fraction at the time t and at infinity, respectively. Under solvolytic conditions $k_{\text {isom }}$ is usually not constant since the bimolecular isomerization rate increases with the increase in $\left[\mathrm{Br}^{-}\right]$ as the reaction progresses.

Table II demonstrates that the $\alpha_{\text {app }}$ values for $5-\mathrm{Br}$ are 4.2-5.5 times higher than those for $5-\mathrm{Cl}$. The solvent isotope effects (SIE) $k_{t}{ }^{0}(\mathrm{AcOH}) / k_{t}{ }^{0}(\mathrm{AcOD})$ are $1.34 \pm$ 0.07 for $5-\mathrm{Br}$ and 1.13 ± 0.09 for $5-\mathrm{Cl}$, and the isomeriza-

Figure 2. Plot of $1 / k_{i}$ vs. $\left[\mathrm{Br}^{-}\right] /\left[\mathrm{OAc}^{-}\right]$in the acetolysis of 0.044 M $5-\mathrm{Br}$ in the presence of 0.087 M NaOAc in AcOH at 120.3°.
tion of the unreacted $\mathbf{5 - B r}$ was also $\mathbf{1 5 \%}$ faster in AcOH than in AcOD.

Ion Pairs. According to Scheme II, any cation 7 is captured either by Br^{-}or by OAc^{-}. If only 7 gives isomerization, the solvolysis should be completely suppressed by addition of external Br^{-}, and only a first-order isomerization with a constant $k_{\text {isom }}\left(=k_{t}{ }^{0}\right)$ should be observed. Capture of 7 by another nucleophile would be of a first order with the same $k_{1}{ }^{0}$, and isomerization should be suppressed.

A suitable nucleophile is Cl^{-}which captures the ion $7,{ }^{29}$ giving products which survive in AcOH . Capture of the cation ($k^{7} \mathrm{Cl}$) with sufficiently high LiCl concentration (Table III) exclude $>90 \%$ of the ROAc formation, giving $5-\mathrm{Br}$ to $6-\mathrm{Br}$ and $5-\mathrm{Cl}$ to $\mathbf{6 - C l}$ ratios close to the equilibrium values. It is highly significant that the $5-\mathrm{Br} \rightleftharpoons 6-\mathrm{Br}$ isomerization still continues even when 7 was almost completely captured. To determine $k^{7} \mathrm{Cl}$ ($=k_{\text {ion }}$ of Scheme II), we studied the incorporation of labeled Cl^{-}into the RCl at low conversion to ROAc, using the isotopic dilution method, with a $1: 1$ mixture of $5-\mathrm{Cl}$ to $6-\mathrm{Cl}$ as "diluents." Three runs at 120.3°, with $0.044 M 5-\mathrm{Br}, 0.087 \mathrm{M} \mathrm{NaOAc}$, and $0.071 \mathrm{Et}_{4} \mathrm{~N}^{36} \mathrm{Cl}$, at $2-15 \%$ reaction, gave an average $10^{5} k^{7} \mathrm{Cl}$ of $5.2 \mathrm{sec}^{-1}$. When the salt effect was accounted for by taking $b=4.5$ (see below) for $\mathrm{Et}_{4} \mathrm{NCl}, 10^{5} k^{7} \mathrm{Cl}=3.95 \mathrm{sec}^{-1}$ with 0.087 $M \mathrm{NaOAc}$ as the only salt. Since this value is almost iden-

Table III. Solvolysis and Isomerization of $0.044 M 5-\mathrm{Br}$ or $\mathbf{6 - B r}$ in the Presence of Added Salts in AcOH at 120.3°

Compd	$\begin{gathered} \mathrm{NaOAc}, \\ 10^{2} M \end{gathered}$	Added salt	Conen, $10^{2} \mathrm{M}$	Reaction time, min	\% ROAc	\% 6-8ra	\% isomerization
$6-\mathrm{Br}^{\text {b,c }}$	8.7			110	22.8	82.8	37.4
				280	42.0	64.0	78.0
$5-\mathrm{Br}$	5.7	LiClO_{4}	3.0	40	8.0	31.2	67.8
				110	13.6	41.1	89.4
$5-\mathrm{Br}$	8.7	LiClO_{4}	3.0	40	10.3	23.7	51.5
				110	17.0	36.3	79.5
				280	28.9	46.0	100.0
6-Br	3.0	LiClO_{4}	3.0	280	31.0	46.0	100.0
$5-\mathrm{Br}$	1.1	$\mathrm{Bu}_{4} \mathrm{NBr}$	7.6	110	ca. 1	20.5	44.7
				280	ca. 2	36.3	79.0
				2880	41.5	46.0	100.0
5-Br	1.1	$\mathrm{Bu}_{4} \mathrm{NBr}$	15.2	280	ca. 2	38.8	84.5
$5-\mathrm{Br}$	3.5	$\mathrm{Bu}_{4} \mathrm{NBr}$	9.0	2880	41.5	46.0	100.0
$6-\mathrm{Br}$	1.1	$\mathrm{Bu}_{4} \mathrm{NBr}$	7.6	110	ca. 1	77.4	41.9
				280	ca. 2	59.0	76.0
$5-\mathrm{Br}$			7.6	290	$4^{\text {d }}$	22.6	49.1
$5-\mathrm{Br}$	8.7	$\mathrm{Et}_{4} \mathrm{NCl}$	7.1	110	$29.0{ }^{\circ}$	8.4	18.3
				280	$58.2{ }^{\text {e }}$	19.6	42.6
5-Br	8.7	$\mathrm{Bu}_{4} \mathrm{NBr}$	15.2	110	ca. 1	24.4	53.0
5-Br ${ }^{\text {f }}$		AgOAc	4.4	25	55.0	35.4	77.0
$5-\mathrm{Br}$		AgOAc	2.2	75	50.0	41.5	90.5
$6-\mathrm{Br}$		AgOAc	2.2	75	50.0	50.0	92.5

${ }^{a}$ In the vinyl bromide fraction. ${ }^{b}[\mathrm{RBr}]=0.0044 \mathrm{M} .{ }^{\mathrm{c}}$ After $24 \mathrm{hr}, k_{t}=2.5 \times 10^{-5} \mathrm{sec}^{-1}$ and $[5-\mathrm{Br}] /[6-\mathrm{Br}]=54 / 46 .{ }^{d} 50 \%$ of RCl were formed. ${ }^{\circ}$ The products are the vinylchlorides. ${ }^{f}$ At 75°.
tical with $k_{\text {ion }}$ of Table II, $>90 \%$ of the cations 7 is captured by Cl^{-}. One-point titration and nmr analysis gave 10^{5} $k_{1}=0.46 \mathrm{sec}^{-1}$ for the ROAc formation (or $0.35 \mathrm{sec}^{-1}$ with only 0.087 M NaOAc). The isomerization of $5-\mathrm{Br}$ to $6-\mathrm{Br}$ under these conditions was studied up to $55 \% \mathrm{Cl}^{-}$incorporation and was a first-order process with $10^{5} k_{\text {isom }}=$ 3.3 (or 2.52 after correction for the salt effect of $\mathrm{Et}_{4} \mathrm{NCl}$) sec^{-1}.

It is apparent that in spite of the complete capture of 7 by Cl^{-}, there is an additional isomerization which is not accounted for by Scheme II. This was verified by using a simulation program (see Appendix) for calculating the concentrations vs. time profiles of ROAc, $\mathbf{5 - B r}$, and $\mathbf{6 - B r}$, and comparing them with the experimental profiles. Starting from either bromide and using $k_{t}{ }^{0}$ of Table II, the [ROAc] $v s$. time profiles were reproduced accurately, but the development of the isomeric bromide was always slower than that found experimentally, even when $\alpha_{\text {app }}$ was allowed to change (Figure 3).

We exclude below cis-trans isomerizations which do not involve primary ionization, and we account for the extra isomerization by extending Scheme II to include the ion pairs 8 in the solvolysis-isomerization mechanism (Scheme III). ${ }^{42}$ These ion pairs may further dissociate (k^{8} diss) or give internal return (ir) to either $5-\mathrm{Br}\left(k^{8}{ }_{\text {ir }}\right)$ or $\mathbf{6 - B r}\left(k^{8}{ }_{\text {ir }}\right)$. Since the products are formed from 7 only, we added no capture process k^{8} SOH.

Scheme III

According to Scheme III, $k_{\text {ion }}$ is given by eq 10 where $k^{8}{ }_{\text {isom }}$ is the first-order isomerization constant via the ion pair, and $k_{t}{ }^{0}$ is known from Table II or from $k^{7} \mathrm{Cl}$. We used

$$
\begin{equation*}
k_{\mathrm{ion}}=k_{t}{ }^{0}+k_{\text {isom }}^{8} \tag{10}
\end{equation*}
$$

three methods for estimating either $k^{8}{ }_{\text {isom }}$ or $k_{\text {ion }}$ directly. (a) In the chloride capture experiment $k_{\text {isom }}=k^{8}$ isom, and

Table IV. Cis-Trans Isomerization of $0.044 M 5-\mathrm{Br}$ and $6-\mathrm{Br}$ in the Presence of 0.011 MaNaOAc at 120.3° in AcOH

Compd	$\mathrm{Bu}_{4} \mathrm{NBr}, M$	$10^{5} k_{\text {isom }}, \mathrm{sec}^{-1 a}$	$10^{5} k$;on, $\mathrm{sec}^{-1 a}$
$\mathbf{5 - B r}$	0.076	8.92 ± 0.19	9.32 ± 0.19
$\mathbf{5 - B r}$	0.152	11.30 ± 0.2	11.70 ± 0.2
$\mathbf{6 - B r}$	0.076	8.48 ± 0.08	8.88 ± 0.08

${ }^{a}$ Corrected for the formation of ROAc during the isomerization.
$k_{1}{ }^{0}=k^{7}{ }_{\mathrm{Cl}}+k_{t}$, where k_{t} measures the minor concurrent ROAc formation. This yields $10^{5} k_{\text {ion }}=6.83$ at 120.3° when $[\mathrm{NaOAc}]=0.087 \mathrm{M}$.
(b) Since $>94 \%$ of ROAc is derived from 7, a first-order isomerization from both 7 and $8\left(k^{7}{ }_{\text {isom }}+k^{8}{ }_{\text {isom }}\right)$ is the main process in the presence of large excess of Br^{-}, and it differs from $k_{\text {ion }}$ only in k_{t} for the minor formation of ROAc (eq 11).

$$
\begin{equation*}
k_{\mathrm{lon}}-k_{t}=k_{1 \mathrm{som}}=k_{1 \mathrm{som}}^{7}+k_{\text {isom }}^{8} \tag{11}
\end{equation*}
$$

Table IV summarizes three first-order isomerization runs, where $k_{\text {isom }}$ values are based on the observed ("equilibrium") infinities. At these high Br^{-}concentrations $10^{6} k_{1}$ $=4 \mathrm{sec}^{-1}$, and $k_{\text {ion }}$ values were calculated by eq 11 . The salt effect of $\mathrm{Bu}_{4} \mathrm{NBr}$ on $k^{5-\mathrm{Br}}{ }_{\text {ion }}$ was calculated according to eq 12 for the normal salt effect, ${ }^{41 \text { a a }}$ where k_{0} is the rate

$$
\begin{equation*}
k_{t}=k_{0}(1+b[\text { salt }]) \tag{12}
\end{equation*}
$$

constant in the absence of salt. The b value is $4.4,43$ giving $10^{5} k_{0}=6.96 \mathrm{sec}^{-1}$ in the presence of 0.011 M NaOAc . Since b values for NaOAc are low, ${ }^{\text {, } 10 \mathrm{~b} .41 \mathrm{a} \text { we used } b=}$ 0.5 , ${ }^{41 \mathrm{a}}$ obtaining $10^{5} k_{\text {ion }}=7.23 \mathrm{sec}^{-1}$ at 120.3°.
(c) Neither a nor b is applicable in the absence of added salt. In analogy with saturated systems where k_{α} measures the change in the " d isomer content" from pure d-RX to the infinity combination of d-RX $+d$-ROS, we developed a general treatment which we call "the total cis content," and which is exemplified for a reaction starting from $6-\mathrm{Br}$.

Let x be the per cent reaction by titration and y the per cent of $6-\mathrm{Br}$ in the RBr fraction at the time t. The per cent of trans products $(6-\mathrm{OAc}+\mathbf{6 - B r})$ in the $\mathrm{RX}+\mathrm{ROAc}$ mixture, Z, is given by eq 13 , where 46 is the equilibrium per-

Figure 3. Concentration vs. time profiles for the solvolysis-isomerization of $0.044 \mathrm{M} 6-\mathrm{Br}$ with 0.087 M NaOAc in AcOH at 120.3°. The points are experimental $[(O) 5-\mathrm{Br}$; (ロ) $\mathbf{6 - B r}$; (O) 5-OAc $+6-\mathrm{OAc}]$, and the lines $[(\mathrm{A})$ for $\mathbf{6 - B r}$; (B) for $5-\mathrm{Br}$; and (C) for $\mathbf{5 - O A c}+\mathbf{6 - O A c}]$ are theoretical and calculated by simulation of Scheme II.

$$
\begin{equation*}
Z=(46 / 100) x+[(100-x) / 100] y \tag{13}
\end{equation*}
$$

centage of 6-OAc in the ROAc fraction. In our system, the percentages of $6-\mathrm{OAc}$ in the ROAc fraction and of $6-\mathrm{Br}$ in the RBr fraction are identical, and the "cis content" ($5-\mathrm{Br}$ $+5-\mathrm{OAc}$) will reach the "cis equilibrium content" in a first-order reaction, with rate constant $k_{\text {ion }}$ (eq 14) since capture of 7 or 8 by either Br^{-}or AcO^{-}contributes to the achievement of the " $c i s$ equilibrium content." Combination of eq 13 and 14 gives eq 15 for $k_{\text {ion }}$, and combination of eq 1 and 9 gives the same expression (eq 16), resulting in eq 17

$$
\begin{gather*}
k_{\text {ion }}=\ln [46 /(46-Z)] / t \tag{14}\\
k_{\text {lon }}=\left[\ln \frac{100}{(100-x)(1-y / 46)}\right] / t= \\
\ln [100 /(100-x)] / t+\ln [1 /(1-y / 46)] / t \tag{15}\\
k_{t}+k_{\text {isom }}=\ln [100 /(100-x)] / t+ \\
\ln [46 /(46-y)] / t=\ln [100 /(100-x)] / t+ \\
\ln [1 /(1-y / 46)] / t \tag{16}\\
k_{\text {ion }}=k_{t}+k_{\text {isom }} \tag{17}
\end{gather*}
$$

where $k_{\text {ion }}$ which is the sum of k_{l} and $k_{\text {isom }}$ (which are not constant during a run) can be calculated from the titrimet; ric and the isomer distribution data in each kinetic run. ${ }^{44}$ The basis of eq 17 is that the return of 7 to RX which decreases k, within a run gives a parallel increase in $k^{7}{ }_{\text {isom }}$. The validity of eq 17 is demonstrated in Table I, and $k_{\text {ion }}$ values of method c are in Table V . Table VI compares the
$k_{\text {ion }}$ values from the three methods. Their agreement seems satisfactory considering the fact that at least two k 's were measured in each method, and that small errors may result from the assumptions that $b\left[\mathrm{Et}_{4} \mathrm{NCl}\right]=b\left[\mathrm{Bu}_{4} \mathrm{NBr}\right]$ and that $b[\mathrm{NaOAc}]=0.5$.

We used a computer simulation of Scheme III, using as an input the $k_{\text {ion }}$ values and Winstein's k 's for internal return and cation-anion recombination. ${ }^{45}$ The program searches the $\left(k^{7}{ }_{\mathrm{Br}}+k^{7}{ }_{\mathrm{Br}}{ }^{\prime}\right) / k^{7}{ }_{\mathrm{OAc}}$ and $\left(k_{\mathrm{ir}}^{8}+k^{8}{ }_{\mathrm{ir}}{ }^{\prime}\right) / k_{\text {diss }}^{8}$ ratios which would give the best fit for the experimental [concentration] vs. time profiles for the various species (see Appendix). The good fit observed in all our cases is demonstrated in Figure 4, where the points are experimental, and the lines are calculated. ${ }^{46}$ Scheme III accounts therefore quantitatively for both the solvolysis and the isomerization, and we believe that it represents the solvolysis mechanism of the vinyl halides studied.

We define in eq 18 "true" α values which measure return from 7 to 8 even if it does not terminate in the covalent RX, and we denote by F the fraction of ion pairs which dissociates further ${ }^{47}$ (eq 19). The relationship between the $\alpha_{\text {app }}$

$$
\begin{gather*}
\alpha=\left(k_{\mathrm{Br}}^{7}+k_{\mathrm{Br}}^{7}\right) / k_{\mathrm{OAC}}^{7} \tag{18}\\
F=k_{\cdot \mathrm{diss}}^{8} /\left(k_{\mathrm{diss}}^{8}+k_{\mathrm{ir}^{\prime}}^{8}+k_{\mathrm{ir}^{\prime}}^{8}\right) \tag{19}
\end{gather*}
$$

values which account only for return which terminates in RX, and α of eq 18 is given by eq 20 . The return to disso-

$$
\begin{array}{r}
\alpha_{\mathrm{app}}=\alpha\left(k_{\mathrm{ir}}^{8}+k_{\mathrm{ir}}^{8}\right) /\left(k_{\mathrm{ir}}^{8}+k_{\mathrm{ir}}{ }^{8}+k_{\mathrm{dlss}}^{8}\right)= \\
\alpha(1-F) \tag{20}
\end{array}
$$

Table V. $k_{\text {ion }}, \alpha$, and $(1-F) / F$ Values for the Acetolysis of $5-\mathrm{Br}, 6-\mathrm{Br}$, and $5-\mathrm{Cl}$

$C^{2} \mathrm{mpd}^{a}$	Solvent	$T,{ }^{\circ} \mathrm{C}$	$10^{5} k_{\mathrm{ion}^{b},{ }^{b} \mathrm{sec}^{-1}}$	α^{c}	$(1-F) / F$	$\%$ return from $\mathbf{8}$
$\mathbf{5 - B r}$	AcOH	120.3	7.52 ± 0.05	45.0	0.905	47.5
$\mathbf{5 - B r}$	AcOH	140.2	44.0 ± 2.3	54.0	0.613	38.0
$\mathbf{5 - B r} \mathrm{Br}^{d}$	AcOH	120.3	11.0 ± 0.3	78.0	1.250	55.5
$\mathbf{5 - B r}$	AcOD	120.3	6.78 ± 0.04	45.0	0.923	48.0
$6-\mathrm{Br}$	AcOH	120.3	7.73 ± 0.11	45.0	0.896	47.3
$6-\mathrm{Br}$	AcOH	140.2	47.0 ± 2.5	54.0	0.654	39.5
$\mathbf{5 - C l}$	AcOH	120.3	0.306 ± 0.018	15.0	0.613	38.0
$\mathbf{5 - C l}$	AcOH	140.2	2.00 ± 0.12	12.2	0.667	40.0
$\mathbf{5 - C l}$	AcOH	158.5	9.20 ± 0.20	12.0	0.710	41.5
$\mathbf{5 - C l}$	AcOD	158.5	8.40 ± 0.21	12.1	0.680	40.5

${ }^{a}[\mathrm{RX}]=0.044 \mathrm{M} ;[\mathrm{NaOAc}]=0.087 \mathrm{M}$ unless otherwise stated. ${ }^{b}$ From the "total cis content. ${ }^{\circ}{ }^{c}$ From the simulation program. ${ }^{d}[5-\mathrm{Br}]=$ 0.0044 M .

Table VI. $k_{\text {ion }}$ Values, Obtained by Various Methods, for the Acetolysis of $5-\mathrm{Br}$ in the Presence of NaOAc^{a}

Method	$10^{5} k_{\text {ion }}, \mathrm{sec}^{-1}$, at 120.3°	From b
(a) Chloride ion capture	$6.83 c$	$k^{7} \mathrm{Cl}+k^{8}$ isom $+\left(k_{t}\right)$
(b) Bromide ion capture	$7.23 c$	$k^{7}{ }^{7}$ isom $+k_{\text {isom }}^{8}+\left(k_{t}\right)$
(c) Total cis content	7.52	$k_{t}+k_{\text {isom }}$

${ }^{a}[5-\mathrm{Br}]=0.044 \mathrm{M} ;[\mathrm{NaOAc}]=0.087 \mathrm{M} .{ }^{\mathrm{b}}$ In parentheses, contribution from the minor concurrent solvolysis. ${ }^{\text {c Based on extrap- }}$ olation involving salt effects.
ciation ratio $\left(k^{8}{ }_{\mathrm{ir}}+k^{8}{ }_{\mathrm{ir}}{ }^{\prime}\right) / k^{8}{ }_{\text {diss }}$ is then $(1-F) / F$. The α, $(1-F) / F$, and percentage of ion return from 7 to RX values are summarized in Table V .

The best α and $(1-F) / F$ ratios for $5-\mathrm{Br}$ from Table V were applied together with the simulation program for the following processes: (a) reproducing the experimental data starting from $6-\mathrm{Br}$; (b) for the runs of $5-\mathrm{Br}$ and $\mathbf{6 - B r}$ in the presence of external Br^{-}, taking the salt effect into account; (c) for the capture experiment with Cl^{-}. For a and b, an excellent fit with the experimental results was found for all the runs, while for c the best fit gave 39% of return from 8 as compared with the 47.5% calculated from the solvolysis runs of $5-\mathrm{Br} .{ }^{48}$ The success of all three methods supports the assumption that 7 and 8 are common intermediates in the solvolyses of $5-\mathrm{Br}$ and $\mathbf{6 - B r}$, and that $\mathbf{7}$ is also common for the solvolysis of $5-\mathrm{Cl}$. All the methods gave a $k^{8}{ }_{\mathrm{ir}} / k^{8}{ }_{\mathrm{ir}}$, ratio of 1.15 , which is reflected in the $5-\mathrm{Br} / 6-\mathrm{Br}$ and the $5-$ $\mathrm{OAc} / 6-\mathrm{OAc}$ ratios of 1.17 at equilibrium.

The distributions of the cationoid species among the various reaction routes when $[\mathrm{RX}]_{0}=0.044 M$ and $[\mathrm{NaOAc}]$ $=0.087 \mathrm{M}$ are summarized in Scheme IV for $5-\mathrm{Br}$ and in Scheme V for $5-\mathrm{Cl}$, where $8-\mathrm{Cl}$ is the ion pair $\left[\mathrm{R}^{+} \mathrm{Cl}^{-}\right]$. Since the reactions of 7 depend on the nucleophile concentration, the values were calculated for the case when $\left[\mathrm{Br}^{-}\right]$ $=\left[\mathrm{OAc}^{-}\right]$. In the absence of data for the solvolysis of $6-\mathrm{Cl}$, we used the same $k^{8}{ }_{\text {ir }} / k^{8}{ }_{\text {ir }}$ ratio as found for $6-\mathrm{Br}$.

Scheme IV

Scheme V

Reaction in the Presence of AgOAc. Strong electrophilic catalysis is shown by AgOAc , which on an equimolar scale

Table VII. Isomerization of
1,2-Dianisyl-2-phenylethylenes at 120.3°

Substrate	Solvent	Added salt	$\begin{gathered} 10^{6} k_{\text {isom }},{ }^{a} \\ \sec ^{-1} \end{gathered}$	$\begin{gathered} \% 5-\mathrm{H} \\ \text { at } \\ \text { equi- } \\ \text { lib- } \\ \text { rium } \end{gathered}$
5-H ${ }^{\text {c }}$	AcOH		9.47 ± 0.66	54
5-H ${ }^{\text {c }}$	AcOD		3.72 ± 0.29	54
6-H ${ }^{\text {c }}$	AcOH		9.5 ± 1.3^{d}	
$5-\mathrm{H}^{e}$	AcOH	0.025 M AgOAc	$11.0{ }^{\text {f }}$	
$5-\mathrm{H}^{e}$	AcOH	0.025 M AgOAc .	15.0^{f}	

${ }^{a}$ Based on the infinity distribution of $5-\mathrm{H}$ and $6-\mathrm{H} .{ }^{b}$ In the $5-\mathrm{H}$ $+6-\mathrm{H}$ mixture. ${ }^{c}$ [Substrate] $=[\mathrm{NaOAc}]=0.087 \mathrm{M} .{ }^{d}$ Based on two points. ${ }^{e}[$ Substrate $]=[\mathrm{NaOAc}]=0.025 \mathrm{M} . f$ One-point experiment.
gives 2-3 orders of magnitude faster solvolysis than with NaOAc (Table III). It is remarkable that the recovered RBr from the solvolysis of excess $5-\mathrm{Br}$ or $\mathbf{6 - B r}$ is partially isomerized. The isomerization is faster with $\mathrm{AgOAc}\left(k_{\text {isom }}\right.$ $\left.=5.2 \times 10^{-4} \mathrm{sec}^{-1}\right)$ than with $\mathrm{NaOAc}\left(k_{\text {isom }}=5.0 \times 10^{-5}\right.$ sec^{-1}).

Isomerization via electrophilic addition-elimination $\left(\mathrm{Ad}_{\mathrm{E}}-\mathrm{E}\right)$ of Ag^{+}to the double bond is excluded by the study of the first-order isomerization of cis- and trans-1.2-dianisyl-2-phenylethylenes ($5-\mathrm{H}$ and $6-\mathrm{H}$) (eq 21) with and

5•H
6-H
without AgOAc . The isomerizations of $5-\mathrm{H}$ and $6-\mathrm{H}$ are 15 and 55% accelerated in the presence of AgOAc (Table VII), and since electrophilic addition to the ethylenes is easier than to the bromides, this route is negligible in the isomerization of the bromides.

We suggest Scheme VI, where the AgOAc molecule is

Scheme VI

the electrophile, as the AgOAc-catalyzed route, since the dissociation of AgOAc in AcOH is probably low. The first

Figure 4. Concentration v. time profiles for the solvolysis-isomerization of $0.044 \mathrm{M} 6-\mathrm{Br}$ with 0.087 M NaOAc in AcOH at 120.3°. The points are experimental $[(0) 5-\mathrm{Br}$; (口) $6-\mathrm{Br} ;(\mathrm{O}) 5-\mathrm{OAc}+6-\mathrm{OAc}]$ and the lines $[(\mathrm{A})$ for $6-\mathrm{Br} ;(\mathrm{B})$ for $5-\mathrm{Br}$; and (C) for $5-\mathrm{OAc}+6-\mathrm{OAc}]$ are theoretical and calculated by simulation of Scheme 11I.
formed intermediate is the ion pair 9a rather than the ionmolecule pair 10, and isomerization occurs via 9 b and in-

ternal return. A similar scheme was suggested by Kelsey and Bergman for the isomerization observed in the acetolysis of 1-cyclopropyl-1-iodopropenes. ${ }^{20 \mathrm{~b}}$

Reaction in the Presence of LiClO_{4}. The correspondence of $k_{t}{ }^{0}$ values of Table VI and $k^{7} \mathrm{Cl}$ suggests that 8 is not captured by Cl^{-}. Table III shows that the rate of ROAc formation at LiClO_{4} concentrations sufficient for complete capture of any "solvent separated" ion pair present ${ }^{4 \mathrm{~b}, 5}$ is only slightly accelerated, arguing strongly that 8 is not a solvent-separated ion pair but probably an intimate ion pair. However, the isomerization rate increases ca. 4.5 -fold, and $k_{\text {ion }}$ with $0.03 \mathrm{M} \mathrm{LiClO}_{4}$ is 4.5 -fold higher than in its absence. Precedents for Li -salt promoted ionization in saturated solvolyses are known, ${ }^{4 \mathrm{c} .49}$ but if the effect is more pronounced in our sluggish vinylic system, ${ }^{50}$ almost all the ion pairs formed in the promoted reaction return to RBr . This may result from a favorable transfer of the bromide ion from the solvated Li^{+}of the ion-molecule pair 11 or the ion pair 12 to the sterically crowded poorly solvated R^{+}, but more work is needed to clarify this behavior.

11

Reaction at Low Concentration of $\mathbf{R B r}$. We expected a first-order solvolysis and isomerization only via the ion pair 8 when $k^{7} \mathrm{OAC} \gg k^{7} \mathrm{Br}^{[}\left[\mathrm{Br}^{-}\right]$. Surprisingly, when the $5-\mathrm{Br}$ concentrations were reduced tenfold to $0.0044 M, k_{1}{ }^{0}$, $k_{\text {isom }}$, and α increased $1.26-, 1.46-$, and 1.73 times, respectively (Tables II and V), and k_{t} and k isom also increased for 6-Br (Table III).

Our treatment implies that $[\mathrm{NaOAc}]=\left[\mathrm{OAc}^{-}\right]$and $[\mathrm{NaBr}]=\left[\mathrm{Br}^{-}\right]$. However, for salts which are not completely dissociated, e.g., NaBr , both free Br^{-}ions (f) and ion pairs $\mathrm{Na}^{+} \mathrm{Br}^{-}(p)$ should be considered, and $k^{7}{ }_{\mathrm{Br}}\left[\mathrm{Br}^{-}\right]$ should be replaced by the sum in eq 22 . Since ion pairs are

$$
\begin{equation*}
k_{\mathrm{Br}}^{7}\left[\mathrm{Br}^{-}\right]=k_{\mathrm{Br}, \mathrm{f}}^{7}\left[\mathrm{Br}^{-}\right]_{\mathrm{f}}+k_{\mathrm{Br}, \mathrm{p}}^{7}\left[\mathrm{Br}^{-}\right]_{\mathrm{p}} \tag{22}
\end{equation*}
$$

less reactive than free ions, ${ }^{51}$ and the $\left[\mathrm{Br}^{-}\right]_{f} /\left(\left[\mathrm{Br}^{-}\right]_{f}+\right.$ $\left[\mathrm{Br}^{-}\right]_{\mathrm{p}}$) ratio increases on dilution, the rate of the $7 \rightarrow \mathrm{RBr}$ reaction would decrease on dilution less than predicted for reaction with only one species (when $k^{7}{ }_{\mathrm{Br}, \mathrm{f}} \gg k^{7}{ }_{\mathrm{Br}, \mathrm{p}}$) and α and k isom will increase. The increase of return at the expense of dissociation at low salt concentration could be due to increased dissociation in the presence of NaBr as compared with NaOAc . Comparison of α and $k_{\text {ion }}$ values for

Table VIII. Acetolysis of $\mathbf{5 - O M s}, \mathbf{6}-\mathrm{OMs}$, and $\mathbf{5 - O T s}+\mathbf{6}$-OTs ${ }^{a}$

Compd	T, ${ }^{\circ} \mathrm{C}$	Added salt	Conen, $10^{2} \mathrm{M}$	$10^{5} k_{t},{ }^{\text {b }} \mathrm{sec}^{-1}$	$10^{5} k_{\text {isom, }}, \mathrm{sec}^{-1}$	$10^{5} k_{\text {ion }}, \mathrm{sec}^{-1}$
5-OMs	75.1			10.0 ± 0.18	3.6 ± 0.5	13.6 ± 0.68
6-OMs	75.1			8.62 ± 0.07	2.8 ± 0.2	11.42 ± 0.27
6-OMs	75.1	$\mathrm{Et}_{4} \mathrm{NOMs}$	32.6	6.18 ± 0.34	7.1 ± 1.1	13.28 ± 1.44
6-OMs	75.1	$\mathrm{Et}_{4} \mathrm{NBr}$	4.3	8.55 ± 0.03^{c}	d	
ROTs ${ }^{e}$	75.1			$11.5 \pm 0.2^{\prime}$		
ROTs ${ }^{\text {e }}$	89.8			57.9 ± 0.2		
ROTs ${ }^{\circ}$	120.3			1130°		

${ }^{a}[\mathrm{ROMs}]=0.0435 \mathrm{M},{ }^{\prime}[\mathrm{NaOAc}]=0.087 \mathrm{M} .{ }^{b}$ Values and standard deviations of runs of 5-6 points. ${ }^{c}$ Sum of k 's for formation of RBr and of ROAc; e.g., at 38.2% reaction $10^{5} k$ for bromide capture is 8.0 and for the formation of the $2 \% \mathrm{ROAc}, 10^{5} \mathrm{k}=0.5$; at $65.4 \% \mathrm{RBr}$ formation, $10^{5} k$ is 7.4 for the bromide capture and 1.2 for the ROAc formation. ${ }^{d}$ The percentage of 5 -OMs in the ROMs fraction is ca. 5% during the reaction. ${ }^{6}$ A 56:44 mixture of 5-OTs and 6-OTs was used. ${ }^{f} \Delta H^{*}=26.7 \mathrm{kcal} / \mathrm{mol} ; \Delta S^{*}=0 \mathrm{eu} .{ }^{\circ}$ Extrapolated value.
different substrates should be therefore made at the same substrate and salt concentrations.

The Possibility of Induced Common Ion Rate Depression.

 An alternative to Scheme III could be Scheme VII, where only "intimate" (13) and "solvent separated" (14) ion pairs are formed, NaOAc is a "special" salt, and the kinetics are due to "induced common ion rate depression" (ICRD) ${ }^{\text {5h }}$ where NaX and NaOAc compete for 14. Cristol, et al., ${ }^{52}$ applied a similar scheme for the acetolysis of syn-7-chlorobenzonorbornadiene with KOAc as a "special" salt, and $\mathrm{KOAc},{ }^{53} \mathrm{LiOAc},{ }^{5 \mathrm{e}, \mathrm{h}}$ and $\mathrm{NaOOCCF}{ }_{3}{ }^{38 \mathrm{~d}}$ were suggested as "special" salts in other solvolyses.Scheme VII

Scheme VII is disproved by the following reasoning. (a) The best "special" salt, $\mathrm{LiClO}_{4},{ }^{5}$ did not show special salt effect. If $\mathbf{1 4}$ is captured completely by NaOAc , exchange of 15 with LiClO_{4} would give $\mathrm{Li}^{+} \| \mathrm{ClO}_{4}{ }^{-}$ion pairs and lower extent of ICRD than with NaOAc alone. However, Table III shows a similar common ion rate depression with and without LiClO_{4}. (b) The strong common ion rate depression in unbuffered AcOH and the similarity of $k_{\text {ion }}$ in unbuffered ${ }^{37}$ and in buffered AcOH does not fit Scheme VII. (c) The "fully depressed" rate for ICRD reflects the ROAc formation from 14, i.e., it should be $k_{t}{ }^{0}$ in the unbuffered AcOH or in AcOH buffered by urea. However, k_{1} at high Br^{-}concentrations is lower than $k_{t}{ }^{0}$ in unbuffered AcOH . (d) The salt effect of NaOAc , which should be substantial for Scheme VII, is closer to the "normal" effect observed in the acetolysis of α-bromo- p-methoxystyrene, where common ion rate depression is absent. ${ }^{10 b}$ (e) Analogy with the common ion rate depression observed for α-arylvinyl halides in the absence of added salts in several solvents ${ }^{10 a, b, 11,13-15,17}$ substantiates Scheme III.

Acetolysis of $5-0 \mathrm{Ms}, \mathbf{6 - 0 M s}$, and $5-0 \mathrm{Ts}+6-0 \mathrm{Ts}$ in Buffered AcOH. Dissociated Ions and Ion Pairs. Acetolysis of either 5-OMs or 6-OMs or a 56:44 mixture of 5-OTs and 6-OTs gave a $54: 46$ mixture of $5-\mathrm{OAc}$ and $\mathbf{6 - O A c}$ at 19 100% reaction, and nmr and ir showed that only solvolysis and isomerization take place. The rate constants did not decrease during a run and were calculated by the KINDAT program. ${ }^{54}$ They were identical either when the appearance of ROAc or the disappearance of ROMs was followed.

The acetolysis of the mesylates was accompanied by a 5 $\mathrm{OMs} \rightleftharpoons 6$-OMs isomerization which was less extensive than that of $5-\mathrm{Br}$ and $\mathbf{6 - B r}$. After 50% acetolysis, only ca. 10% of the isomeric mesylate was present in the ROMs fraction. Equilibration of 5 -OMs and $\mathbf{6 - O M s}$ was not achieved during the acetolysis and a first-order $k_{\text {isom }}$ was calculated by
using an "infinity" distribution of 54% 5-OMs to 46% 6OMs (Table VIII).

Scheme VIII describes the solvolysis-isomerization of the

Scheme VIII

mesylates. The constancy of k_{t} within a run indicates that $k_{\text {isom }}$ measures return with isomerization only from the ion pair 16, and that $k_{\text {ion }}$ is the sum of the first-order constants of eq 23. The ROAc can still be formed from 7 whose cap-

$$
\begin{equation*}
k_{\text {lon }}=k_{t}+k_{\text {isom }}=k_{t}+k_{\text {isom }}^{16} \tag{23}
\end{equation*}
$$

ture by OAc^{-}is faster than return, and reaction of 6-OMs in the presence of $\mathrm{Et}_{4} \mathrm{NOMs}$ indeed gave $k_{t}{ }^{\text {d }}$ which was only 72% of k_{t} in the absence of $E t_{4}$ NOMs, i.e., $>28 \%$ of the ROAc arises from 7. ${ }^{55}$ The derived selectivity factor $k_{\mathrm{OMs}} / k_{\mathrm{OAc}}$ is 0.104 , and correcting for normal salt effect, by using $b=0.5$ for $\mathrm{Et}_{4} \mathrm{NOMs}$, as calculated from the two points for 6-OMs in Table VIII, gives $\alpha=k_{\mathrm{OMs}} / k_{\mathrm{OAc}}=$ 0.16 . Simultaneously, $k_{\text {isom }}$ increases significantly, but although the unreacted mesylate was 65% isomerized after 2 solvolytic half-lives, the $\mathbf{5}-\mathrm{OMs} \rightleftharpoons \mathbf{6}$-OMs equilibrium was not achieved during a run.

A more complete capture of 7 formed from 6-OMs takes place with Br^{-}. Reaction of $6-\mathrm{OMs}$ in the presence of 0.043 $M \mathrm{NaOAc}$ and $0.043 \mathrm{MEt}_{4} \mathrm{NBr}$ gave $>94.5 \% 5-\mathrm{Br}$ and 6Br (in a 52.2:47.8 ratio), indicating that the incomplete capture of 7 from $5-\mathrm{Br}$ is due to the increase of $k^{5-\mathrm{Br}}$ ion at high salt concentrations. After formation of 65% of RBr , nmr and AcO^{-}titration showed the presence of 5.5% of $54: 46$ of $5-\mathrm{OAc}$ and $6-\mathrm{OAc}$, and this value was increased to 18% ROAc after 5 half-lives. The $\alpha_{\text {app }}$ of $\mathbf{1 7}$ which was obtained from the [RBr$] /[\mathrm{ROAc}]$ ratio is close to the $\alpha_{\text {app }}$'s of Table II. ${ }^{56}$ The sum of the rate constants for ROAc formation and the Br^{-}disappearance is identical with k_{l} in the acetolysis of 6-OMs.

If Br^{-}captures only 7, the isomerization of 6 -OMs should be similar with and without $\mathrm{Et}_{4} \mathrm{NBr}$. Nmr showed that $c a .5 \%$ of $\mathbf{5 - O M s}$ accompanies the unreacted $\mathbf{6 - O M s}$, but its concentration changes only slightly during the reaction. Whether this is an experimental error, or some $\mathbf{1 6}$ is captured by the Br^{-}is unknown.

Scheme IX summarizes the distribution of the intermediates from ROMs among the various routes.

Exclusion of Nonheterolytic Isomerization Routes. Whenever cis-trans isomerization is used as a mechanistic tool in vinylic solvolysis, other isomerization routes should be explicitly excluded. An isomerization via rotation

Scheme IX

around the central bond in the contributing structure 17 contradicts the slower isomerization with added Cl^{-}and

the pronounced solvent and substituent effects on the isomerization. A nucleophilic addition-elimination isomerization (eq 24) ${ }^{57}$ is highly unlikely for our nucleophilic sub-

strates and the weak OAc^{-}nucleophile, as judged by the behavior of the 9 -(α-haloarylidene)fluorenes. ${ }^{58}$

The electrophilic addition-elimination route $\left(\mathrm{Ad}_{\mathrm{E}}-\right.$ E) ${ }^{10 \mathrm{~b} .32}$ (Scheme X) is known to operate both for substitution and for acid-catalyzed isomerization of vinylic compounds. ${ }^{59}$ The following distinguishing criteria ${ }^{10 \mathrm{~b}, 32 \mathrm{c}}$ favor the SNl and discard the $\mathrm{Ad}_{\mathrm{E}}-\mathrm{E}$ route in our system.
(a) Products. An α-phenyl group stabilizes a neighboring positive charge better than α-bromine or chlorine, and addition would give the 1,2 -diacetate 21 via the cation 19. The non-Markovnikov addition may give some of the 1,1-diacetate 23 via 18 and 22. None of these were observed.
(b) The Solvent Effect. The electrophilic addition should be faster in AcOH than in $80 \% \mathrm{EtOH} .{ }^{32 a .60}$ For compound $24-\mathrm{Br}$ which reacts via $\mathrm{SN} 1, k_{l}(80 \% \mathrm{EtOH}) / k_{l}(\mathrm{AcOH})=$ 15 , while for $24-\mathrm{Cl}$, which reacts by both SNl and $\mathrm{Ad}_{\mathrm{E}}-\mathrm{E}$, the ratio is $0.13 .{ }^{10 b}$ Our $k_{1}(80 \% \mathrm{EtOH}) / k_{l}(\mathrm{AcOH})$ ratios of $6.3,7.0$, and 3.2 for $5-\mathrm{Br}, 6-\mathrm{Br}$ and $5-\mathrm{Cl}$, respectively, fit the SN 1 route.
(c) The Solvent Isotope Effect. Literature data ${ }^{10 \mathrm{~b}}$ give sol-
$\mathrm{AnC}(\mathrm{X})=\mathrm{CH}_{2}$
$\mathrm{X}=\mathrm{Cl}: 24-\mathrm{Cl}$
$\mathrm{X}=\mathrm{Br}: 24-\mathrm{Br}$
$\mathrm{X}=\mathrm{H}: \quad 24-\mathrm{H}$
vent isotope effects (SIE) $k_{\mathrm{AcOH}} / k_{\mathrm{AcOD}}$ of ≤ 1.2 for the vinylic $\operatorname{SN} 1$ solvolysis and much higher values for the Ad_{E} process, e.g., 3.4 for addition of AcOH to $\mathbf{2 4 - H}$. The SIE based on $k_{\text {ion }}$ of 1.11 for $5-\mathrm{Br}$ and 1.10 for $5-\mathrm{Cl}$ are within the SN 1 range. ${ }^{61}$

As a closer model, we determined a SIE of 2.55 for the cis-trans isomerization of the ethylenes $5-\mathrm{H}$ and $6-\mathrm{H}$ in $\mathrm{AcOH}-\mathrm{NaOAc}$, assuming that it involves a rate-determining addition of a proton to the double bond (Table VII). According to the Hammond's principle ${ }^{62}$ as applied to the SIE in the $\operatorname{Ad}_{\mathrm{E}}$ reactions, ${ }^{63}$ this should be a good approximation to the SIE in the addition of proton to $5-\mathrm{Br}$ and $5-\mathrm{Cl}$ since the $k_{\mathrm{Br}} / k_{\mathrm{H}}$ ratio of Table IX suggests that the degree of proton transfer from AcOH to the double bond in the transition state is similar for the additions to both $5-\mathrm{H}$ and $5-\mathrm{Br}$.
(d) The Effect of the Leaving Group. The $\operatorname{Ad}_{\mathrm{E}}$ rate to $\mathbf{5 - X}$ should decrease on increasing the electron-withdrawing ability of X , i.e., with σ_{I} and $\sigma_{\mathrm{R}} .{ }^{64}$ When $\mathrm{X}=\mathrm{H}$, the SN 1 process is unfeasible, and when $X=O A c$, it will be very slow. The relative reactivities of good leaving groups would be determined by the $\mathrm{C}-\mathrm{X}$ bond strength, by the polarizability and the charge dispersal on the group X , and by solvation effects.

Our data for the soivolysis and isomerization of 5-X for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{OMs}, \mathrm{OTs}, \mathrm{H}, \mathrm{OAc}$, and σ_{I} and σ_{R} values of the six groups, ${ }^{65,66}$ and literature data on observed reactivity ratios for various X groups for both routes, ${ }^{10 \mathrm{~b} .67-69}$ are given in Table IX. $\sigma\left(\mathrm{OSO}_{2} \mathrm{Ph}\right)$ was approximated for $\sigma(\mathrm{OTs})$ since $\sigma(\mathrm{OTs}) \sim \sigma(\mathrm{OMs})$.

We found only two studies on the Ad_{E} process to vinyl X when $\mathrm{X}=\mathrm{H}, \mathrm{Br}$, and $\mathrm{Cl} .{ }^{67,68,70}$ The addition of $\mathrm{CF}_{3} \mathrm{COOH}$ to 2 -X-propenes is a closer model to our case, ${ }^{67}$ but data on bromination of $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{X}) \mathrm{CH}_{2} \mathrm{Cl}^{68}$ were also included. The effect of an $\alpha-\mathrm{OAc}$ group on the Ad_{E} rate in AcOH is highly dependent on the other α substituents: $k(\mathrm{MeC}(\mathrm{O}-$ $\left.\mathrm{Ac})=\mathrm{CH}_{2}\right) / k\left(\mathrm{MeCH}=\mathrm{CH}_{2}\right)=1300,{ }^{71}$ while $k(\mathrm{An}-$

Scheme X

Table IX. Relative Reactivities for the Ad_{E} and the $\mathrm{S}_{\mathrm{N}} 1$ Reactions

Group X	$\sigma_{1}(\mathrm{X})$	$\sigma_{\mathrm{R}}(\mathrm{X})$	-_-Relative k for Ad_{E}			Relative $k_{t},{ }^{g}$ literature	Relative $k_{t,}{ }^{h}$ experimental	$\begin{gathered} \text { Relative } \\ k^{0} \text { isom, }^{h} \\ \text { experimental } \end{gathered}$
H	0^{a}	0^{a}	12	5000	11.4			0.27
Cl	$0.51{ }^{\text {a }}$	-0.35^{a}	4.3	0.8	(2.1)	0.03	0.04	0.04
Br	0.50^{a}	$-0.34{ }^{\text {a }}$	1.0	1.0	(1.0)	1.0	1.0	1.0
OAc	$0.40^{a . b}$	$-0.32^{a, b}$			314	$<1.5 \times 10^{-5}$	<0.002	<0.01
OMs	$0.43{ }^{\text {c }}$	-0.14^{c}				85	$244{ }^{i}$	100^{i}
$\mathrm{OSO}_{2} \mathrm{Ph}$	$0.40{ }^{\circ}$	-0.13^{c}				100	281	

[^0]
$\left.\mathrm{C}(\mathrm{OAc})=\mathrm{CH}_{2}\right) / k\left(\mathrm{AnCH}=\mathrm{CH}_{2}\right)=28.10 \mathrm{~b}$

The predicted k_{1} are based on the $k_{\mathrm{Br}} / k_{\mathrm{CI}}$ ratios for vinylic ${ }^{10, c^{10} 72}$ and saturated systems, ${ }^{73}$ the $k_{\mathrm{OMs}} / k_{\mathrm{OTs}}$ ratios for the trianisylvinyl ${ }^{17}$ and saturated systems, ${ }^{74}$ and on a $k_{0 T s} /$ k_{Br} ratio of 100 which is close to that for the trianisylvinyl system in $\mathrm{AcOH},{ }^{17}$ although ratios of $5.15-765$ were found for vinylic systems ${ }^{1}$ and higher ones for saturated compounds. ${ }^{75}$ The $k_{\mathrm{Cl}} / k_{\mathrm{OAC}}$ ratios are for the tert-butyl system. ${ }^{69}$

Table IX and these considerations suggest for X the following reactivity order: for the Ad_{E} route, $\mathrm{OAc}>\mathrm{H}>\mathrm{Br}$ $<\mathrm{Cl}>\mathrm{OMs} \sim \mathrm{OTs}$; and in the SN 1 route, $\mathrm{OTs}>\mathrm{OMs}\rangle$ $\mathrm{Br}>\mathrm{Cl} \gg \mathrm{OAc}$. The actual order of k_{t} (OTs $\geq \mathrm{OMs}>\mathrm{Br}$ $>\mathrm{Cl} \gg \mathrm{OAc})^{76}$ and $k^{0}{ }_{\text {isom }}(\mathrm{OMs}>\mathrm{Br}>\mathrm{Cl}<\mathrm{H})$ indicates an SNl route, except probably for the $k^{0}{ }_{\text {isom }}(5-\mathrm{H}) /$ $k^{0}{ }_{\text {isom }}(5-\mathrm{Cl})$ ratio.
(e) The Effect of Catalyst. The much stronger AgOAc catalysis for the solvolysis and isomerization of $5-\mathrm{Br}$ than for the isomerization of $5-\mathrm{H}$ indicates a $\mathrm{C}-\mathrm{Br}$ bond heterolysis.
(f) Comparison with Other Systems. $\mathbf{2 4}-\mathrm{Br}$ acetolyzes via the $\mathrm{S}_{\mathrm{N}} 1$ route. We argued that since β-phenyl substituents retard the Ad_{E} reactions on styrenes, ${ }^{77}$ and they usually accelerate the SNl reaction, the $\mathrm{AnCX}=\mathrm{C}(\mathrm{Ar}) \mathrm{Ar}^{\prime}$ compounds would acetolyze via $\mathrm{S} N 1 .{ }^{10 b}$ This applies for our compounds since $k_{l}(5-\mathrm{Br}) / k_{l}(24-\mathrm{Br})$ and $k_{l}(6-\mathrm{Br}) /$ $k_{i}(24-\mathrm{Br})$ ratios are 2.72 in AcOH at 120.3°.

Selectivity and Reactivity of the Cationoid Species. The almost exclusive formation of products from free ions is rare in solvolysis reactions. ${ }^{78}$ Winstein implied that as the relative stability of R^{+}increases, the solvent attack shifts to a more dissociated species, ${ }^{4 a}$ and accordingly, the ion 7 is more stable than most of the R^{+}'s studied in AcOH .

The selectivity constant α for saturated cations increases with the increased stability of R^{+}(which is measured by k_{t} for RX). ${ }^{35 a .79}$ While we found no α value for comparison between halide and acetate ions in AcOH , our values are higher than the α 's ($=k_{\mathrm{Br}} / k_{\mathrm{AcOH}}, k_{\mathrm{Cl}} / k_{\mathrm{AcOH}}$) for the stable $\mathrm{Ph}_{2} \mathrm{CH}^{+}$cation since $\mathrm{Ph}_{2} \mathrm{CHCl}$ and $\mathrm{Ph}_{2} \mathrm{CHBr}$ show no common ion rate depression in $\mathrm{AcOH} .{ }^{80}$ This raises the question why the sluggishly formed vinyl cation is so much more stable than anticipated from the reactivity-selectivity principle.

When the products are derived mainly or exclusively from ion pairs, the fraction ($1-F$) of ion pair return in $\mathrm{AcOH}\left(0.62-0.96\right.$ for $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{OTs}$, ${ }^{45,8 l a}$ norbornyl bromide, chloride, and brosylate, ${ }^{4 \mathrm{c} .7 \mathrm{a}, 81 \mathrm{~b}}$ and 2 -anisylcyclopentyl tosylate ${ }^{81 \mathrm{c}}$) is usually higher than in our system. The appreciable internal return suggests a tight proximity of R^{+} and X^{-}in 8 , while the absence of products from 8 (and probably from 16) suggests that proximity of R^{+}and OAc^{-} is excluded at the ion pair stage. Models show that the cis
$\beta-\mathrm{Ar}$ and $\alpha-\mathrm{An}$ and the $\mathrm{cis} \beta-\mathrm{Ar}$ and $\alpha-\mathrm{Br}$ groups in the covalent substrates are within bonding distance and on ionization to a tight ion pair, the front-side remains shielded by the leaving group. While some of the cis α-An and β-Ar interaction is relieved in the sp-hybridized R^{+}, approach of the solvent is still retarded. Indeed, $24-\mathrm{Br}$ with two β hydrogens does not show common ion rate depression and give products from the ion pairs. ${ }^{10 a, 28}$ Furthermore, the elec-tron-donating p-methoxyphenyl group stabilizes the various cationic species and leads to dissociation of the ion pairs.

Similar factors are responsible for the selectivity (i.e., the "stability") of the cation 7. Approach to the α carbon is severly hindered, and its electrophilicity is reduced since the charge resides partly on the anisyl group. The failure of the reactivity-selectivity principle, applied to saturated and vinyl cations together, is due to these effects and to the stabilized ground state of the vinylic compound (cf. structure 17).

Ritchie ${ }^{82}$ found that the reactivity of nucleophiles toward several highly stable cations is expressed by eq 25 , where k_{n}

$$
\begin{equation*}
\log \left(k_{\mathrm{n}} / k_{\mathrm{H}_{2} \mathrm{O}}\right)=N_{+} \tag{25}
\end{equation*}
$$

and $k_{\mathrm{H}_{2} \mathrm{O}}$ are the rate constants for the reaction of a cation with a nucleophile and with water, respectively, and N_{+}is a parameter which characterizes the nucleophile and is independent of the cation. The failure of the reactivity-selectivity principle for solvolytically formed ions ${ }^{35 \mathrm{a} .79}$ was partially explained as due to product formation from ion pairs. ${ }^{82 b} .83$ However, a correct application of the reactivity-selectivity principle requires comparison of $k_{\text {ion }}$ and α, while the actual comparison was made between k_{t} and $\alpha_{\text {app. }} .{ }^{35 a, 79.80}$ The relationship between k_{t} and $k_{\text {ion }}$ and α and $\alpha_{\text {app }}$ (eq 20 and 26) suggests that such comparison can lead to erroneous re-

$$
\begin{equation*}
k_{t}^{0}=F k_{\text {ion }} \tag{26}
\end{equation*}
$$

sults. The exclusive product formation from 7 gives a unique opportunity to study the reactions of nonisolable free carbonium ions with nucleophiles. In Table X, we compare the relative reactivities of several X^{-}toward 7 (as calculated from the α values) at the same salt concentration, assuming that the ion pair dissociation constants and the $k_{\mathrm{f}} / k_{\mathrm{p}}$ ratios of the different salts are independent of the salt.

We found no data in AcOH for comparison with Table X. Swain and Scott's n values ${ }^{84}$ show that our selectivity values for the $\mathrm{Br}^{-}, \mathrm{Cl}^{-}$, and OMs^{-}ions are only slightly lower than those toward MeBr in water, but that of the OAc^{-}ion is higher. The $k\left(\mathrm{AcO}^{-}\right) / k(\mathrm{AcOH})$ ratio toward 7 differs slightly from the $k\left(\mathrm{OH}^{-}\right) / k\left(\mathrm{H}_{2} \mathrm{O}\right)$ ratio toward MeBr but is much higher than the $N_{+}\left(\mathrm{OH}^{-}\right) / N_{+}\left(\mathrm{H}_{2} \mathrm{O}\right)$ or

Table X. Relative Reactivity of Nucleophiles Toward the Cation $\boldsymbol{7}^{a}$

Nucleophile	Rel reactivity
OMs^{-}	1.0
OAc^{-}	6.2
Cl^{-}	94
Br^{-}	282
(AcOH)	$(0.015)^{b}$

${ }^{a}$ At $120.3^{\circ} ;[\mathrm{RX}]=0.044 \mathrm{M} ;$ [total salts $]=0.087 \mathrm{M} .{ }^{b}$ Based on several one-point experiments in unbuffered AcOH or in the presence of urea.
the $N_{+}\left(\mathrm{MeO}^{-}\right) / N_{+}(\mathrm{MeOH})$ ratios. ${ }^{82}$ The differences between $\mathrm{Br}^{-}, \mathrm{Cl}^{-}$, and OMs^{-}ions are due to solvation; the less nucleophilic anion is more solvated.

External ion return (Table X) and internal return (Schemes IV, V and IX) show the same reactivity order, indicating the same contributing factors to both returns, except that solvation of X^{-}in the tight ion pair is much lower than that of the free X^{-}ion.

The order of $1-F$ values $[\mathrm{Br}(0.47)>\mathrm{Cl}(0.38)>\mathrm{OMs}$ $(0.24)]$ resembles those for the norbornyl $[1-F=$ $0.96(\mathrm{Br}),{ }^{4 \mathrm{c}} 0.91(\mathrm{Cl}),{ }^{81 \mathrm{~b}} 0.71(\mathrm{OBs})^{6 \mathrm{a}}$] and the cyclobutyl systems $\left[1-F=0.43(\mathrm{Cl}), 0.20(\mathrm{OMs}), 0.08(\mathrm{OTs})^{85}\right]$ in AcOH where products arise from ion pairs. Roberts ${ }^{55}$ noted a correspondence between the size of X^{-}and the extent of return, which calls for less return than that observed for our bromide. However, more data are required to decide between the solvation and steric explanations.

The slight preference for capturing 7 from one side and the independence of the cis/trans capture ratio of the nucleophile are in contrast to the large differences observed when the bulk of the β substituents in R^{+}is changed. ${ }^{12,27}$ The insensitivity to the electronic nature of the β substituents and the steric bulk of the nucleophile suggest a reac-tant-like transition state for the recombination reaction.
\boldsymbol{k}_{t} as a Measure of $\boldsymbol{k}_{\text {ion }}$. Ionization rates should be correlated in terms of $k_{\text {ion }}$, and discrepancies in correlations involving k_{t} are often attributed to ion pair return. ${ }^{80}$ Up to now, structural and solvent effects in vinylic systems were discussed in terms of k_{l} since data on $k_{\text {ion }}$ were absent. Such treatment implies that in comparison of $k_{t}{ }^{0}$ values, the F 's would be similar (eq 26). Table XI compares several reactivity ratios, SIE, and activation parameters, which are now available for both k_{l}^{0} and $k_{\text {ion }}$, and leads to the following conclusions for our systems.
(i) The similarity of the F values for each pair of isomers justifies the discussion of the $k_{\text {cis }} / k_{\text {trans }}$ ratios in terms of $k_{1}{ }^{0}$. The ratios of $c a .1$ both when $\mathrm{X}=\mathrm{OMs}$ and Br argue against β-anisyl participation since β-anisyl and β-phenyl groups are trans to the leaving group in 5 and in 6 , respectively. ${ }^{86}$ This is supported by the identical 5-OAc/6-OAc mixtures which are formed from the different precursors under kinetic control.
(ii) Qualitative discussion of the $k_{\mathrm{Br}} / k_{\mathrm{Cl}}$ ratios in terms of k_{t}^{0} is justified. The ratios resemble those found in the acetolyses of vinylic ${ }^{10 a, b, 72}$ or saturated ${ }^{73}$ systems.
(iii) SIE which are based on $k_{1}{ }^{0}$ may replace those based on $k_{\text {ion }}$, but $k_{\text {ion }}$ values are more reliable since errors in k_{t} are compensated in $k_{\text {isom }}$.
(iv) The $k_{\mathrm{OMs}} / k_{\mathrm{Br}}$ ratios which are based on $k_{\text {ion }}$ are appreciably lower than those based on $k_{t}{ }^{0}$ since F (ROMs) $>$ $F(\mathrm{RBr})$. Our actual ratios and the $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratio of 281 at 120.3° resemble the k OTs $/ k_{\mathrm{Br}}$ value of 231 , which was suggested as typical for a secondary substrate, ${ }^{87}$ but the values are lower than those for many aliphatic and bicyclic compounds. ${ }^{75.88}$ Our results show that the low k ots $/ k_{\mathrm{Br}}$ ratios observed for $k_{\text {, }}$ in some vinylic solvolyses ${ }^{1,17}$ are not due to internal return since the ratios which are based on $k_{\text {ion }}$
would be even lower.
(v) While it is difficult to estimate the errors in the activation parameters (because of the extrapolations used), the high activation energies which are based on k ion seem to behave more regularly than those based on $k_{1}{ }^{0}$.
(vi) The reactivity ratio $k(5-\mathrm{Br}) / k(24-\mathrm{Br})$ which is based on $k_{\text {ion }}$ differs slightly from that based on $k_{1}{ }^{0}$, because of small differences in the $F^{\prime} \mathrm{s}$. This is encouraging regarding the comparison of k_{t} values of structurally different compounds since $5-\mathrm{Br}$ and $24-\mathrm{Br}$ differ greatly in the steric and electronic effects of the β substituents and in the product-forming cationoid intermediate. ${ }^{89}$

Experimental Section

Melting points are uncorrected. Uv spectra were recorded with a Perkin-Elmer 450 spectrophotometer, ir spectra with a PerkinElmer 337 spectrophotometer, mass spectra with a MAT 311 in strument, and nmr spectra with Varian T-60 and HA-100 instruments. The signal positions are given in δ units downfield from tetramethylsilane. Radioactivity was counted with a Packard 3320 scintillation counter.

Materials and Solvents. The preparation of $5-\mathrm{Br}, \mathbf{6 - B r}, 5-\mathrm{Cl}, 6-$ $\mathrm{Cl}, 5-\mathrm{H}, 6-\mathrm{H}$, and dry AcOH and the isolation of $5-\mathrm{OAc}$ and $6-$ OAc were described earlier. ${ }^{29} \mathrm{Bu} u_{4} \mathrm{NBr}$ (Eastman), mp 107-108 ${ }^{\circ}$. was crystallized from ethyl acetate, and $\mathrm{Et}_{4} \mathrm{NOMs}^{90}$ was dried at 120° before use. $E t_{4} \mathrm{~N}^{36} \mathrm{Cl}$ was prepared by equilibration of $\mathrm{Et}_{4} \mathrm{NCl}$ (Aldrich) with $\mathrm{H}^{36} \mathrm{Cl}$ (The Radiochemical Center, Amersham) in water for 24 hr , evaporating the water, crystallizing the salt from acetone, and drying it in vacuo for 48 hr . AcOD (containing $\leq 2 \% \mathrm{AcOH}$) was prepared by refluxing an equilibrium mixture of $\mathrm{D}_{2} \mathrm{O}$ and acetic anhydride for several hours, distillation, and collection of the middle fraction, bp 117°.
cis- and trans-1,2-Di(p-methoxyphenyl)-2-phenylvinyl Methanesulfonates ($5-0 \mathrm{Ms}$ and $\mathbf{6 - 0 M s}$). A $1: 1 \mathrm{mixture}$ of $5-\mathrm{Br}$ and $\mathbf{6 - B r}$ $(6.3 \mathrm{~g}, 16 \mathrm{mmol})$ and silver methanesulfonate ($3.6 \mathrm{~g}, 17.5 \mathrm{mmol}$) was refluxed in dry acetonitrile (100 ml) in the dark for 6 hr . filtered, and evaporated, and the remaining oil (ca. 1:1 5-OMs to 6OMs) was recrystallized from $\mathrm{MeOH}(100 \mathrm{ml})$. The first fraction contained 90% of $5-\mathrm{OMs}$ and 10% of $6-\mathrm{OMs}$, and the second fraction contained 90% 5-OMs $+10 \%$ 6-OMs. The overall yield was $5.6 \mathrm{~g}(85 \%)$.

Recrystallization of the first fraction (MeOH) gave white pyramids of trans-1,2-di(p-methoxyphenyl)-2-phenylvinyl methanesulfonate (6 -OMs), mp $140-141^{\circ} ; \delta\left(\mathrm{CDCl}_{3}\right) 2.53(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OSO}_{2} \mathrm{Me}\right), 3.77,3.83(2 \times 3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{MeO}), 7.15(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$, $6.68-7.47$ ($8 \mathrm{H}, 2$ merging q, 2 An); m/e 410 ($\mathrm{M}, 12 \%$), 331 ($\mathrm{M}-$ $\left.\mathrm{SO}_{2} \mathrm{Me}, 76 \%\right), 316\left(\mathrm{M}-\mathrm{SO}_{2} \mathrm{Me}-\mathrm{Me}, 7 \%\right), 315(\mathrm{PhC}(\mathrm{An})=$ $\mathrm{CAn}^{+}, 4 \%$), 303 ($\mathrm{An}_{2} \mathrm{CPh}^{+}, \mathrm{B}$), 195 (p-methoxyfluorenyl ${ }^{+}, 14 \%$). 165 (fluorenol ${ }^{+}, 10 \%$), 153 (10\%), 152 (18%), 135 ($\mathrm{AnCO}^{+}, ~ 17 \%$), and 77 ($\mathrm{Ph}, 16 \%$)

$\lambda_{\text {max }}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) 236 \mathrm{~nm}(\epsilon 21,000), 297(15,300) ; \nu_{\text {max }}\left(\mathrm{CCl}_{4}\right)$ $2900-3060(\mathrm{C}-\mathrm{H}), 2835(\mathrm{C}-\mathrm{H}$ or MeO$), 1600(\mathrm{~b}, \mathrm{C}=\mathrm{C}), 922(\mathrm{~d}$, differs from $5-\mathrm{OMs}$), 605 , and $562 \mathrm{~cm}^{-1}$.

Recrystallization (MeOH) of the second fraction gave white crystals of cis-1,2-di(p-methoxyphenyl)-2-phenylvinyl methanesulfonate (5 -OMs), mp 145-146 ${ }^{\circ}: \delta\left(\mathrm{CDCl}_{3}\right) 2.45(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OSO}_{2} \mathrm{Me}\right), 3.73,3.78(2 \times 3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{MeO}), 7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.60-7.48(8 \mathrm{H}, 2 \mathrm{q}, 2 \mathrm{An}) ; m / e 410(\mathrm{M}, 9 \%), 331\left(\mathrm{M}-\mathrm{SO}_{2} \mathrm{Me}\right.$, $59 \%), 316\left(\mathrm{M}-\mathrm{SO}_{2} \mathrm{Me}-\mathrm{Me}, 6 \%\right), 315\left(\mathrm{AnC}(\mathrm{Ph})=\mathrm{CAn}^{+}, 4 \%\right)$,
 renol $\left.^{+}, 15 \%\right), 153(18 \%), 152(27 \%), 135\left(\mathrm{AnCO}^{+}, 26 \%\right), 77(\mathrm{Ph}$, 26%), and the same metastable peaks as for 6 -OMs; $\lambda_{\max }\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ $241 \mathrm{~nm}(\epsilon 21,500), 300.5(14,800)$; $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 2900-3060(\mathrm{C}-$ H), 2835 ($\mathrm{C}-\mathrm{H}$ of MeO), $1600(\mathrm{~b}, \mathrm{C}=\mathrm{C}$), 940, 912, 585 (differs from 6-OMs), and $570 \mathrm{~cm}^{-1}$.

Anal. Caled for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 67.30 ; \mathrm{H}, 5.40 ; \mathrm{S}, 7.81$. Found (trans isomer): $\mathrm{C}, 67.46 ; \mathrm{H}, 5.32 ; \mathrm{S}, 8.33$. Found (cis isomer): C , 67.60; H, 5.25; S, 7.88.

1,2-Di(\boldsymbol{p}-methoxyphenyl)-2-phenylvinyl \boldsymbol{p}-Toluenesulfonates (5-

Table XI. Comparison of Kinetic and Activation Parameters Based on $k_{t}{ }^{0}$ and $k_{\text {ion }}$, Respectively ${ }^{a}$

Parameter	T, ${ }^{\circ} \mathrm{C}$	\sim - Based on -_-_		Parameter	T, ${ }^{\circ} \mathrm{C}$	--Based on--	
		$k_{\text {ion }}$	$k_{t}{ }^{0}$			$k_{\text {ion }}$	$k_{t}{ }^{0}$
$k(5-\mathrm{Br}) / k(6-\mathrm{Br})$	120.3	0.97	1.00	$k(5-\mathrm{Br}) / k(24-\mathrm{Br})$	120.3	1.93	2.72
	140.2	0.94	0.90	$\Delta H^{*}(5-\mathrm{Br}), \mathrm{kcal} / \mathrm{mol}$	120.3	27.6	31.1
$k(5-\mathrm{OMs}) / k(6-\mathrm{OMs})$	75.1	1.19	1.16	$\Delta S^{*}(5-\mathrm{Br})$, eu	120.3	-7.0	0.6
$k(5-\mathrm{Br}) / k(5-\mathrm{Cl})$	120.3	24.6	23.9	$\Delta H^{*}(6-\mathrm{Br}), \mathrm{kcal} / \mathrm{mol}$	120.3	28.2	32.8
	140.2	22.0	25.3	$\Delta S^{*}(6-\mathrm{Br})$, eu	120.3	-5.4	4.9
$k(5-\mathrm{OMs}) / k(5-\mathrm{Br})$	75.1	$200^{\text {b }}$	$492^{\text {b }}$	$\Delta H^{*}(5-\mathrm{Cl}), \mathrm{kcal} / \mathrm{mol}$	120.3	29.0	28.4
$k_{\text {Acoh }} / k_{\text {A } \mathrm{COO}}(5-\mathrm{Br})$	120.3	1.11	1.34 ± 0.07	$\Delta S^{*}(6-\mathrm{Cl})$, eu	120.3	-9.8	-12.4
$k_{\text {Acoh } / k_{\text {AcOD }}(5-C l)}$	158.5	1.10	1.13 ± 0.09				

${ }^{a}$ All the data are for $[\mathrm{RX}]=0.044 \mathrm{M}$ and $[\mathrm{NaOAc}]=0.087 \mathrm{M} .{ }^{b}$ Based on the extrapolated values: $10^{\circ} k_{\mathrm{ion}}=6.85 \mathrm{sec}^{-1}$ and $10^{\circ} k_{t^{0}}=2.03$ sec^{-1} for $5-\mathrm{Br}$ at 75.1°.

OTs and 6-0Ts). A $1: 1$ mixture of $5-\mathrm{Br}$ and $6-\mathrm{Br}(25.2 \mathrm{~g}, 64$ mmol) and silver p-toluenesulfonate ($18 \mathrm{~g}, 64 \mathrm{mmol}$) was refluxed for 24 hr in dry acetonitrile (100 ml) in the dark. Treatment similar to that for the mesylates gave an oil ($18.5 \mathrm{~g}, 60 \%$) which was crystallized ($\mathrm{MeOH}, 25^{\circ}$), giving a mixture of cis- and trans-1,2di(p-methoxyphenyl)-2-phenylvinyl p-toluenesulfonates (5-OTs and 6-OTs), mp 115-120 $: \delta\left(\mathrm{CDCl}_{3}\right) 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.70$, 3.78 ($6 \mathrm{H}, 2 \mathrm{~s}$ (in 56:44 ratio), 2 MeO), $6.43-7.42$ ($17 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\lambda_{\max }(\mathrm{EtOH}) 228.7 \mathrm{~nm}(\epsilon 28,800), 292(15,850) ; \nu_{\max }\left(\mathrm{CS}_{2}\right) 1360$ (s), $1300(\mathrm{~s}), 1260(\mathrm{vs}), 1180(\mathrm{vs})$, and $1150(\mathrm{~s}) \mathrm{cm}^{-1} ; \mathrm{m} / e 486$ (M, 2.5\%), 332 ($\mathrm{AnCHPhCOAn}^{+}, 27 \%$), 331 ($\mathrm{M}-\mathrm{O}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}$, $99 \%), 316\left(\mathrm{M}-\mathrm{O}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{Me}, 55 \%\right), 315(\mathrm{AnC}(\mathrm{Ph})=$ $\left.\mathrm{CAn}^{+}, 51 \%\right), 303\left(\mathrm{An}_{2} \mathrm{CPh}^{+}, \mathrm{B}\right), 197\left(\mathrm{AnCHPh}^{+}, 17 \%\right), 195(p-$ methoxyfluorenyl ${ }^{+}, 20 \%$), 165 (fluorenyl ${ }^{+}$, 15\%), 152 (10%), 135 ($\mathrm{AnCO}^{+}, 56 \%$).
Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 71.58 ; \mathrm{H}, 5.39 ; \mathrm{S}, 6.59$. Found: C, $71.54 ; \mathrm{H}, 5.48$; S, 6.81.

Kinetic Procedure. (a) With the Vinyl Halides. Stock solutions of the vinyl halides in $\mathrm{AcOH}-\mathrm{NaOAc}$ were used. The sealed ampoules technique was followed. The Br^{-}formation was followed titrimetrically or potentiometrically, while the vinyl chloride solvolysis was followed by titration of the NaOAc with $\mathrm{HClO}_{4}-\mathrm{AcOH}$, using crystal violet indicator.

The isomerization was followed by ir in CS_{2}, using calibration curves which were prepared from the pure halide isomers and the two acetates. The intensity ratios at $575(5-\mathrm{Br})$ and $615(6-\mathrm{Br})$ and $575(5-\mathrm{Cl})$ and $635 \mathrm{~cm}^{-1}(6-\mathrm{Cl})$ were used for the bromides and the chlorides, respectively. These strong peaks do not overlap any strong peak of the isomeric halide, but a relatively weak absorption of the ROAc introduces an error at high reaction percentages. The estimated accuracy of the $5-\mathrm{Br} / 6-\mathrm{Br}$ and the $5-\mathrm{Cl} / 6-\mathrm{Cl}$ ratios is $\pm 1 \%$, when the ratios are 0.2-4.0.

Samples (2 ml) for the isomerization were taken from the ampoules before titration, evaporated, dissolved in CCl_{4}, filtered, washed with water, dried, evaporated, dissolved in CS_{2}, and analyzed.
(b) With the Vinyl Sulfonates. Reaction mixtures in $\mathrm{AcOH}-$ NaOAc were kept in a volumetric flask, and samples were withdrawn and cooled immediately in ice-water. The unreacted NaOAc was titrated with $\mathrm{HClO}_{4}-\mathrm{AcOH}$ using crystal violet indicator. A mixture of concentrated NaHCO_{3} and CCl_{4} was added immediately, the organic layer was rapidly separated, the indicator was extracted with dilute HCl , and the mixture was washed with water, dried, and evaporated. Nmr and ir determinations were carried on the remaining oil. Nmr showed that the appearance of ROAc and the disappearance of ROMs have similar rates.

The extent of isomerization was determined by nmr from the ratio of the methyl singlets of $\mathbf{5 - O M s}$ and 6 -OMs. The extent of reaction of $6-\mathrm{OMs}$ in the presence of $\mathrm{Et}_{4} \mathrm{NBr}$ was determined by titration of both the unreacted Br^{-}and OAc^{-}ions. For most points, the amount of ROAc formed was also determined by nmr.

Reaction of $5-\mathrm{Br}$ with Radioactive ${ }^{36} \mathrm{Cl}^{-}$. Ampoules containing a mixture of $5-\mathrm{Br}$ ($43.5 \mathrm{mmol} / \mathrm{l}$), NaOAc ($87 \mathrm{mmol} / \mathrm{l}$), and $\mathrm{Et}_{4} \mathrm{~N}^{36} \mathrm{Cl}(71 \mathrm{mmol} / 1 ., 5000 \mathrm{cpm} / \mathrm{mg})$ in $\mathrm{AcOH}(3 \mathrm{ml})$ were kept at 120°. At the appropriate times, samples were transferred completely into CCl_{4} (30 ml) containing 500 ml of a $1: 1$ mixture of 5 Cl and $6-\mathrm{Cl}$. This ratio resembles that obtained in the reaction with excess Cl^{-}. The use of a different composition of "diluents" results in an error in the calculation of k. The mixture was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and dissolved in MeOH
(20 ml). Ethanolic $\mathrm{AgNO}_{3}(5 \mathrm{ml}$) was added, the AgBr formed was filtered, most of the solvent was evaporated, CCl_{4} was added, the mixture was washed with water, and the organic layer was dried and evaporated. The remaining oil was crystallized from $\mathrm{MeOH}(15 \mathrm{ml})$, half of the precipitate was dried to a constant weight, and its radioactivity was counted twice, and the other half was recrystallized and was also counted twice. The difference in count was $\pm 1.5 \%$, and the average value was used for the kinetic calculations. Ir showed that the sample contained $<5 \%$ of $\mathbf{5 - B r}$ and $6-\mathrm{Br}$.

The very strong quenching by our compounds required the use of internal $\mathrm{Na}^{36} \mathrm{Cl}$ standard, but even this method gave positive deviations when the quenching was higher than 40%. Moreover, toluene scintillation solution or toluene Triton- X solution cannot be used due to a different efficiency in the counting of the organic and the inorganic chloride under identical conditions. These difficulties were avoided by using a Bray solution (60 g of naphthalene, 4 g of POP, 200 g of POPOP, 100 ml of $\mathrm{MeOH}, 20 \mathrm{ml}$ of ethylene glycol, completed to 11 . with dioxane) and a sample of $50 \mathrm{mg} / 10 \mathrm{ml}$ or less.
The isomerization rate was studied under identical conditions as described above. Since both $5-\mathrm{Cl}$ and $5-\mathrm{Br}$ absorb at $575 \mathrm{~cm}^{-1}$, calibration curves for different ratios of $1: 15-\mathrm{Cl}$ and $6-\mathrm{Cl}$ to $5-\mathrm{Br}$ and $6-\mathrm{Br}$ were used for evaluating the $5-\mathrm{Br} / 6-\mathrm{Br}$ ratio.

For calculation, we used the equation $k^{7} \mathrm{Cl}=(2.3 / t) \log \left[n_{\infty} /\right.$ $\left.\left(n_{\infty}-n_{t}\right)\right]$ where $n_{\infty}=4.35 m / 7.1$ (m is the activity of the whole solution at $t=0$) is the expected count of RCl at infinity, and n_{t} is the count of the sample at the time t. This was calculated from the relationship $n_{t}=r(500+p) / q$ where r is the average count at the time t, q is the weight (in milligrams) of the sample, and p is the weight of the RCl formed by the reaction at the time t.

Isomerization of 1,2- $\mathrm{Di}(p$-methoxyphenyl)-2-phenylethylenes ($5-\mathrm{H}$ and $6-\mathrm{H}$). The cis/trans ratio of the ethylenes $5-\mathrm{H}$ and $6-\mathrm{H}$ and the isomerization rates were determined from the intensity ratio of the $\delta 3.69$ to the $\delta 3.74$ signal. An equilibrium mixture of $54 \% 5-\mathrm{H}$ to $46 \% 6$-H was obtained after 192 hr at 120° or after 18 hr at 150°.

Solvolysis and Isomerization in the Presence of AgOAc. (a) Equimolar amounts of the RBr and $\mathrm{AgOAc}(25 \mathrm{mmol}$) were refluxed in AcOH in a light-protected flask for $45-60 \mathrm{~min}$. The AgBr was filtered off, and analysis of the organic fraction showed the quantitative formation of a $54: 46$ mixture of 5 -OAc to 6 -OAc.
(b) $5-\mathrm{Br}$ or $6-\mathrm{Br}(95 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{AgOAc}(20 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ were refluxed in $\mathrm{AcOH}(10 \mathrm{ml})$ for 45 min . After the usual work-up, 50% of vinyl acetates was observed. The recovered RBr from $5-\mathrm{Br}$ was $58.5 \% 5-\mathrm{Br}$, and that from $\mathbf{6 - B r}$ contained $50 \% 5-$ Br . When equimolar amounts of $5-\mathrm{Br}$ and $\mathrm{AgOAc}(44 \mathrm{mmol})$ were kept at 75° for 25 min , the mixture contained 55% of ROAc in a ratio of $53 \% 5-\mathrm{OAc}$ to $47 \% 6-\mathrm{OAc}$, and the remaining bromides were $64.6 \% 5-\mathrm{Br}$ and $35.4 \% \mathbf{6 - B r}$.

Acknowledgments. We are indebted to the Volkswagen Foundation for partial support of the work, to Professor A. Lifshitz and Mr. M. Frenklach for the use of their computer simulation method, to Professor P. v. R. Schleyer for preprints, and to Professor S. Patai for discussions.

Appendix

Scheme III was simulated by using a computer program
which applies the Runge-Kutta procedure for numerical integration. We used the following procedure: (a) $k^{5-\mathrm{Br}}$ ion and $k^{6-\mathrm{Br}_{\text {ion }}}$ were obtained from the "total cis content" method. (b) Steady-state treatment gives eq 27 when $k^{5 \cdot \mathrm{Br}_{\text {ion }}}=$

$$
\begin{equation*}
\left(k_{\mathrm{ir}}^{8}+k_{\mathrm{ir}^{0}}^{8}\right) / k_{\mathrm{diss}}^{8}=\left(k_{\mathrm{ion}}^{5-\mathrm{Br}} / k_{t}{ }^{0}\right)-1=(1-F) / F \tag{27}
\end{equation*}
$$

$k^{6-\mathrm{Br}_{\text {ion }}}$. Using the known k_{1}^{0}, a first approximation for (1 $-F) / F$ is obtained. (c) From the equilibrium constant K for the $5-\mathrm{Br}=6-\mathrm{Br}$ isomerization (eq 28), and the $k^{5-\mathrm{Br}}$ ion

$$
\begin{equation*}
K=[\mathrm{cis}] /[\mathrm{trans}]=k_{\mathrm{ir}}^{8} k^{6-\mathrm{Br}} \mathrm{i}_{\mathrm{ion}} / k_{\mathrm{ir}}^{8} k^{5-\mathrm{Br}}{ }_{\mathrm{ion}} \tag{28}
\end{equation*}
$$

and $k^{6-\mathrm{Br}}{ }_{\mathrm{ion}}$ values, the $k^{8}{ }_{\mathrm{ir}} / k^{8}{ }_{\mathrm{ir}}{ }^{\text {r }}$ ratio is obtained. (d) An estimate of α was obtained by measuring and estimating the other terms of eq 20. (e) All the rate constants and their ratios were introduced as a first guess into the program, together with $k^{8}{ }_{\mathrm{ir}}$ and $k^{8}{ }_{\mathrm{ir}}{ }^{\prime}$ of $10^{2}-10^{3} \mathrm{sec}^{-1}$ and $k^{7}{ }_{\mathrm{Br}}$ and
 constants did not affect the results, as far as they exceed much $k_{\text {ion }}$, but increased the computation time. (f) Using the above data, α and $(1-F) / F$ values were changed until the best fit between experimental and calculated points was obtained.

References and Notes

(1) Part XIX: Z. Rappoport, J. Kaspi, and Y. Apeloig, J. Amer. Chem. Soc., 96, 2612 (1974).
(2) For preliminary communications, see (a) Z. Rappoport and Y. Apeloig, Isr. J. Chem., 7, 33p (1969); (b) Tetrahedron Lett., 1817 (1970); (c)
ibid. 1845 (1970); (d) Abstracts, Second IUPAC Conference on Physiibid., 1845 (1970); (d) Abstracts, Second IUPAC Conference on Physical Organic Chemistry, Noordwijkerhout, April 28 to May 2 1974, p 38.
(3) For an excellent and extensive review dealing with ion pairs in solvolysis reactions, see D. J. Raber, J. M. Harris, and P. V. R. Schleyer in "Ion and Ion Pairs in Organic Reactions," Vol. II, M. Szwarc, Ed., Wiley-Interscience, New York, N.Y., 1973.
(4) For leading references, see (a) S. Winstein, E. Clippinger, A. H. Fainberg, R. Heck, and G. C. Robinson, J. Amer. Chem. Soc., 78, 328 (1956); (b) S. Winstein and G. C. Robinson, ibid., 80, 169 (1958); (c) S. Winstein, B. Appel, R. Baker, and A. Diaz, Chem. Soc., Spec. Publ., No. 19, 109 (1965).
(5) (a) S. Winstein, E. Clippinger, A. H. Fainberg, and G. C. Robinson, J. Amer. Chem. Soc., 76, 2597 (1954); (b) Chem. Ind. (London), 664 (1954); (c) A. H. Fainberg and S. Winstein, J. Amer. Chem. Soc., 78, 2767 (1956); (d) A. H. Fainberg, G. C. Robinson, and S. Winstein, ibid, 78, 2777 (1956); (e) S. Winstein and E. Clippinger, ibid., 78, 2784 (1956); (f) S. Winstein and A. H. Fainberg, ibid., 80, 459 (1958); (g) E. Jenny and S. Winstein, Helv. Chim. Acta, 41, 807 (1958); (h) S. Winstein, P. E. Klinedinst, Jr., and G. C. Robinson, J. Amer. Chem. Soc., 83, 885 (1961).
(6) E.g., (a) S. Winstein and D. Trifan, J. Amer. Chem. Soc., 74, 1154 (1952); (b) H. Weiner and R. A. Sneen, ibid., 87, 292 (1965); (c) R. A. Sneen, Accounts Chem. Res., 6, 46 (1973); (d) "'Non-Classical lons," P. D. Bartlett, Ed., W. A. Benjamin, New York, N. Y., 1965.
(7) E.g., (a) S. Winstein and A. H. Fainberg, J. Amer. Chem. Soc., 80, 459 (1958); R. A. Sneen and A. M. Rosenberg, ibid., 83, 895, 900 (1961); H. L. Goering and E. C. Linsay, ibid., 91, 7435 (1969); A. F. Diaz and S. Winstein, ibid., 91, 4300 (1969); (b) A. Fava in 'The Chemistry of Organic Sulfur Compounds," Vol. II, N. Kharasch and C. Meyers, Ed., Pergamon Press, London, 1966, p 73; L. A. Spurlock and T. E. Parks, "Mechanism of Reactions of Sulfur Compounds," 3, 161 (1968); L. A. Spurlock, R. K. Porter, and W. G. Cox, J. Org. Chem., 37, 1162 (1972), and previous papers in the series; D. Darwish and R. McLaren, Tetrahedron Lett. 1231 (1962); D. Darwish and E. A. Preston, ibid., 113 (1964); A. H. Wragg, J. S. Rayden, and T. S. Stevens, J. Chem. Soc., 3603 (1958); E. Cluffarin, M. Isola, and A. Fava, J. Amer. Chem. Soc., 90, 3594 (1968); E. J. Corey, J. Casanova, Jr., P. A. Vatakencherry, and R. Winter, ibid., 85, 169 (1963); S. G. Smith and J. P. Petrovich, J. Org. Chem., 30, 2882 (1965).
(8) E.g., (a) H. L. Goering and J. F. Levy, J. Amer. Chem. Soc., 86, 120 (1964); (b) H. L. Goering, R. G. Boidy, and J. P. Levy, ibid., 85, 3059 (1963); (c) H. L. Goering, G. S. Koermer, and E. C. Linsay, ibid., 94, 1230 (1972); (d) S. Winstein and B. R. Appel, ibid., 86, 2720 (1964); (e) A. F. Diaz and S. Winstein, ibid., 86, 4484 (1964).
(9) For general references for vinylic solvolysis, see (a) H. G. Richey, Jr., and J. M. Richey, "Carbonium lons," Vol. I, G. A. Olah and P. V. R. Schleyer, Ed., Interscience, New York, N.Y., 1970; (b) M. Hanack, ACcounts Chem. Res., 3, 209 (1970); (c) C. A. Grob, Chimia, 25, 87 (1971); (d) G. Modena and U. Tonellato, Advan. Phys. Org. Chem., 9, 185 (1971); (e) P. J. Stang, Progr. Phys. Org. Chem., 10, 205 (1973).
(10) (a) Z. Rappoport and A. Gal, Tetrahedron Lett., 3233 (1970); (b) J. Chem. Soc., Perkin Trans. 2, 301 (1971); (c) A. Gal, Ph.D. Thesis, The Hebrew University, 1972.
(11) M. D. Schiavelli, S. C. Hixon, H. W. Moran, and C. J. Boswell, J. Amer. Chem. Soc., 93, 6989 (1971).
(12) (a) Z. Rappoport and M. Atidia, Tetrahedron Lett., 4085 (1970); (b) J.

Chem. Soc., Perkin Trans. 2, 2316 (1972).
(13) Z. Rappoport and Y. Houminer, J. Chem. Soc., Perkin Trans. 2, 1506 (1973).
(14) (a) Z. Rappoport and J. Kaspi, J. Amer. Chem. Soc., 96, 586 (1974); (b) ibid., 96, 4518 (1974)
(15) L. L. Miller and D. A. Kaufman, J. Amer. Chem. Soc., 90, 7282 (1968).
(16) (a) G. Modena and U. Tonellato, Chem. Commun., 1676 (1968); (b) J. Chem. Soc. B, 374 (1971).
(17) (a) Z. Rappoport and J. Kaspi, J. Amer. Chem. Soc., 92, 3220 (1970); (b) J. Chem. Soc., Perkin Trans. 2, 1102 (1972).
(18) (a) R. H. Summerville and P. v. R. Schleyer, J. Amer. Chem. Soc.. 94, 3629 (1972); (b) ibid., 96, 1110 (1974); (c) R. H. Summerville, C. A. Senkler, P. V. R. Schleyer, T. E. Dueber, and P. J. Stang, ibid., 96, 1100 (1974).
(19) (a) T. C. Clarke, D. R. Kelsey, and R. G. Bergman, J. Amer. Chem. Soc., 94, 3626 (1972); (b) T. C. Clarke and R. G. Bergman, ibid., 94, 3627 (1972).
(20) (a) D. R. Kelsey and R. G. Bergman J. Amer. Chem. Soc., 92, 228 (1970); (b) ibid. 93, 1941 (1971).
(21) C. A. Grob and R. Nussbaumer, Helv. Chim. Acta, 54, 2528 (1971).
(22) A. C. Day and M. C. Whiting, J. Chem. Soc. B, 991 (1967).
(23) R. S. Macomber, J. Amer. Chem. Soc., 92, 7101 (1970).
(24) Possible optically active vinylic systems are the allenyl- [R. S. Macomber, Tetrahedron Lett., 4639 (1970); note 4 in ref 2c] and the 4,4-disubstituted cyclohexylidene (Y. Apeloig, Ph.D. Thesis, The Hebrew University, 1974) systems.
(25) Symmetric systems could be made unsymmetric by deuterium labeling.
(26) Only one type of ion pair is mentioned for simplicity, although more than one may be actually present.
(27) Z. Rappoport, A. Pross, and Y. Apeloig, Tetrahedron Lett., 2015 (1973).
(28) Z. Rappoport and Y. Apeloig, J. Amer. Chem. Soc., 96, 6428 (1974).
(29) Z. Rappoport and Y. Apeloig, J. Amer. Chem. Soc., 91, 6734 (1969).
(30) The same $5-\mathrm{Br}-6-\mathrm{Br}$ and $5-\mathrm{Cl}-6-\mathrm{Cl}$ equilibrium ratios were found in acetonitrile.
(31) The $54: 46$ ratio of 5 -OAc to 6-OAc was obtained starting from either $5-\mathrm{Br}$ or $6-\mathrm{Br}$ (or $6-\mathrm{Cl}$). This is in contrast to the small inversion selectivity which was observed for α-substituted cyclopropylvinyl iodides. ${ }^{20}$
(32) (a) P. E. Peterson and J. M. Indelicato, J. Amer. Chem. Soc., 90, 6515 (1968); (b) W. M. Schubert and G. W. Barfknecht, ibid., 92, 207 (1970); (c) Z. Rappoport, T. Bassler, and M. Hanack, ibid., 92, 4985 (1970).
(33) The fate of the Br^{-}is not clear. The nmr of the reaction mixture is complex, showing at least six methoxyl signals. This was not investigated further.
(34) W. S. Trahanovsky, M. P. Doyle, and P. D. Bartlett, J. Org. Chem., 32, 150 (1967).
(35) For discussions on common ion rate depression, see (a) C. K. Ingold, "Structure and Mechanism in Organic Chemistry," 2nd ed., Cornell University Press, Ithaca, N.Y., 1969, pp 483-493; (b) ref 4a, c.
(36) The possibility that 7 is a mixture of a rapidly equilibrating mixture of isomeric ions formed by an α, β-phenyl migration was excluded by labeling experiments (E. Noy, Y. Houminer, and Z. Rappoport, unpublished results).
(37) Indeed, a $k_{\text {ion }}$ of $8.2 \times 10^{-5} \mathrm{sec}^{-1}$ is calculated from the above data by using eq 17. The similarity with $k_{\text {ion }}$ in buffered AcOH argues strongly that the slower product formation in the unbuffered AcOH is due to a larger return.
(38) (a) S. Winstein, E. Grunwald, and L. L. Ingraham, J. Amer. Chem. Soc., 70, 821 (1948); (b) S. Winstein and K. Schreiber, ibid., 74, 2171 (1952); (c) S. G. Smith, A. H. Fainberg, and S. Winstein, ibid., 83, 618 (1961); (d) I. L. Reich, A. F. Diaz, and S. Winstein, ibid., 94, 2256 (1972).
(39) While the linearity predicted by eq 8 is obeyed at $<50 \%$ reaction, points at higher per cent reaction frequently fall below the line. This is due both to the connection between $k_{\text {ion }}$ and $\alpha_{\text {app }}$ and to the incomplete dissociation of the NaBr (see below). For example, an eight-point run at $5-75 \%$ reaction gives $10^{5} k_{1}^{0}=3.28 \pm 0.31 \mathrm{sec}^{-1}, \alpha_{\text {app }}=15.4 \pm$ $2.0(r=0.99633)$, whereas for the six points at $5-48 \%$ reaction, 10^{5} $k_{5}{ }^{0}=4.02 \pm 0.11 \mathrm{sec}^{-1}$, and $\alpha_{\mathrm{app}}=23.3 \pm 1.0(r=0.99957)$. We therefore used consistently only points at $<50 \%$ reaction for calculating $k_{\text {ion }}$ and $\alpha_{\text {app }}$. Note that the most significant changes in k_{1} are at low "\% reaction" where the errors in both terms are the highest.
(40) This is due to the fact that the values on the $\left[\mathrm{Br}^{-}\right] /\left[\mathrm{OAC}^{-}\right]$axis are ca. two times higher than the correct values of method c; see also note 46.
(41) E.g., (a) A. H. Fainberg and S. Winstein, J. Amer. Chem. Soc., 78, 2763 (1956); (b) S. Winstein, M. Hojo, and S. Smith, Tetrahedron Lett,, 12 (1960); (c) S. Winstein, E. C. Friedrich, and S. Smith, J. Amer. Chem. Soc., 86, 305 (1964); (d) C. A. Bunton, T. W. Del Pesco, A. M. Dunlop and K.-U. Yang, J. Org. Chem., 36887 (1971); (e) C.L. Perrin and J. Pressing, J. Amer. Chem. Soc., 93, 5705 (1971).
(42) The actual isomerization probably occurs by interconversion of the isomeric ion pairs 8a and 8b, which are formed with retained stereochem-

8a

8 b
istry from $5-\mathrm{Br}$ and $6-\mathrm{Br}$. However, in the absence of information on the interconversion rate, it is more convenient to introduce only one ion pair 8.
(43) Using the two points for $5-\mathrm{Br}$ from Table IV and the point from method c (Table V) gives $b=3.6$ for $\mathrm{Bu}_{4} \mathrm{NBr}$.
(44) The situation is much more complicated when the equilibrium percentages of $5-\mathrm{OAc}$ and $5-\mathrm{Br}$ differ. In this case, the corresponding logarithmic expression for $k_{\text {ion }}$ of eq 15 cannot be separated into two terms.
(45) S. Winstein, R. Baker, and S. Smith, J. Amer. Chem. Soc, 86, 2072
(1964).
(46) ROAC] values at different times were calculated by the simulation method using $10^{5} k_{\text {lon }}=7.52 \mathrm{sec}^{-1}, 10^{5} k_{l}^{0}=3.95 \mathrm{sec}^{-1}$, and $\alpha_{\text {app }}=$ 21.3 and were applied to check methods b and c for evaluating $k_{t}{ }^{\circ}$. These values were introduced into eq 6 where k_{1} replaces $k_{\text {ins }}$ and into eq 8 for various $n=\left[\mathrm{OAC}^{-}\right]_{0} /[\mathrm{RX}]_{0}$ ratios. The excellent fit with eq 8 (r $=0.9999-1.0000$) shows its suitability for calculating k_{1}^{0} and $\alpha_{\text {app }}$ in the case of common ion rate depression. For eq 6 (with k_{t}), $r, k_{t}{ }^{0}$, and $\alpha_{\text {app }}$ were strongly dependent on n. The best $r(=0.99957), k_{t}{ }^{0}$, and $\alpha_{\text {app }}$ values are for $n=2$, and they decrease for $n<2$, e.g., in the ex treme case of $n=0.25, r=0.9778, k_{t}^{0}=0.88 \times 10^{-5} \mathrm{sec}^{-1}(4.6$ fold lower than $k_{1}{ }^{\circ}$ of Table II), and $\alpha_{\text {app }}=0.8$ (26.6 times lower than α_{app} of Table II). The success of method b rests on the fortuitous choice of $n=2$ as our standard conditions.
(47) F is usually defined as the fraction of ionization which gives products (see ref 49 a and eq 26 below). However, in most systems, ${ }^{3} F$ relates to product formation via ion palrs, while in our case it relates to formation of free ions which both give products and return.
(48) This is probably due to a small error in the concentration of 6-Cl. A 5% error in the $5-\mathrm{Cl} / 6-\mathrm{Cl}$ ratio of the last experimental points is sufficient to change the return from 8 from 45 to 39%.
(49) (a) A. H. Fainberg and S. Winstein, J. Amer. Chem. Soc., 78, 2780 (1956); (b) S. Winstein, S. Smith, and D. Darwish, ibid., 81, 5511 (1959)
(50) Note, however, that LiCl has no special effect in promoting the ionization of $5-\mathrm{Br}$.
(51) (a) N. N. Lichtin and K. N. Rao, J. Amer. Chem. Soc., 83, 2417 (1961); (b) A. J. Parker, Chem. Rev., 69, 1 (1969).
(52) S. J. Cristol, A. L. Noreen, and G. W. Nachtigall, J. Amer. Chem. Soc., 94, 2187 (1972).
(53) R. N. McDonald and J. R. Curtis, J. Amer. Chem. Soc., 93, 2530 (1971),
(54) R. C. Williams and J. M. Taylor, J. Chem. Educ., 47, 129 (1970).
(55) The upper limit for ROAC formation from 7 is unknown since higher $\mathrm{Et}_{4} \mathrm{NOMs}$ concentrations could not be used for solubility reasons.
(56) When $\left[\mathrm{OAc}^{-}\right],\left[\mathrm{Br}{ }^{-}\right] \gg[\mathrm{ROMs}], \alpha_{\mathrm{app}}=[\mathrm{RBr}] /[\mathrm{ROAc}]$. This is not the case here, and since the $\left[\mathrm{Br}^{-}\right]$decreased during the run more than the $\left[\mathrm{OAc}^{-}\right]$, and RBr also yields some ROAc, the $\alpha_{\text {app }}$ calculated from product analysis should be lower than that based on common ion rate depression.
(57) S. Patai and Z. Rappoport, J. Chem. Soc., 397 (1962); Z. Rappoport, C. Degani, and S. Patai, ibid., 4513 (1963); Z. Grünbaum, S. Patai, and Z Rappoport, J. Chem. Soc. B, 1133 (1966); for a summary, see S. Patai and Z. Rappoport in "The Chemistry of Alkenes," S. Patai, Ed., WileyInterscience, London, 1964, Chapter 8; for a summary of nucleophilic vinylic substitution via addition-elimination, see Z. Rappoport, Advan Phys. Org. Chem., 7, 1 (1969).
(58) Z. Rappoport and A. Gal, J. Org. Chem., 37, 1174 (1972)
(59) D. S. Noyce, W. A. Pryor, and P. A. King, J. Amer. Chem. Soc., 81, 5423 (1959); D. S. Noyce, G. L. Woo, and M. J. Jorgenson, ibid., 83 1160 (1961); D. S. Noyce and M. J. Jorgenson, ibid, 83, 1160 (1961) D. S. Noyce, D. R. Hatter, and F. B. Miles, ibid., 90, 4633 (1968); R. C. Fahey and H.-J. Schneider, ibid., 92, 6885 (1970).
(60) P. E. Peterson and J. M. Indelicato, J. Amer. Chem. Soc., 91, 6194 (1969).
(61) The SIE of 1.34 based on k_{t} for $5-\mathrm{Br}$ which may point to a minor contribution of the $\mathrm{Ad}_{E}-\mathrm{E}$ route was traced to a high SIE for the first point, while the SIE which is based on $k_{\text {ins }}$ is ca. 1.15 for the whole run
(62) G. S. Hammond, J. Amer. Chem. Soc., 77, 334 (1955).
(63) D. S. Noyce, D. R. Harter, and F. B. Miles, J. Org. Chem., 33, 4260 (1968); W. M. Schubert and J. R. Keefe, J. Amer. Chem. Soc., 94, 559 (1972).
(64) R. W. Taft, Jr., and I. C. Lewis, J. Amer. Chem. Soc., 81, 5343 (1959): R. W. Taft, Jr., S. Ehrenson, I. C. Lewis, and R. E. Glick, ibid., 81, 5352 (1959).
(65) O. Exner in "'Advances in Linear Free Energy Relationships," N. B Chapman and J. Shorter, Ed., Plenum Press, London, 1972, Chapter 1, p 37 .
66) O. Exner and J. Lakomy, Collect. Czech. Chem. Commun., 35, 1371 (1970).
(67) P. E. Peterson and R. I. Bopp, J. Amer. Chem. Soc., 89, 1283 (1967)
(68) S. R. Hooley and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1053 (1973).
(69) The ROAC/RCI reactivity ratio is based on the >2000-fold faster uncatalyzed hydrolysis of t-BuCl in water [A. H. Fainberg and S. Winstein, J. Amer. Chem. Soc., 78, 2770 (1956)] as compared with the acid-catalyzed hydrolysis of t-BuOAc [C. A. Bunton and J. L. Wood, J. Chem. Soc., 1522 (1955)].
(70) Chlorine substituents reduce the AdE rate to alkenes: P. B. D. de la Mare and R. Bolton, 'Electrophilic Additions to Unsaturated Systems,"' Elsevier, Amsterdam, 1966, pp 27, 85; P. B. D. de la Mare and J. G. Pritchard, J. Chem. Soc., 3910 (1954); D. L. H. Williams, J. Chem. Soc. B, 421 (1969); J. Burgin, G. Hearne, and F. F. Rust, Ind. Eng. Chem., 33, 385 (1941).
(71) D. S. Noyce and R. M. Pollack, J. Amer. Chem. Soc., 91, 7158 (1969).
(72) Z. Rappoport and A. Gal, J. Amer. Chem. Soc., 91, 5246 (1969).
(73) E.g., (a) K. A. Copper and E. D. Hughes, J. Chem. Soc., 1183 (1937); E. D. Hughes and U. G. Shapiro, ibid., 1177 (1937); (b) A. H. Fainberg and S. Winstein, J. Amer. Chem. Soc., 79, 1597, 1602, 1608, (1957); (c) P. v. R. Schleyer and R. D. Nicholas, ibid., 83, 2700 (1961). The lower ratios are in AcOH, probably because of a better hydrogen bonding to the incipient chloride ion (ref 73b).
(74) (a) D. S. Noyce, B. E. Johnston, and B. Weinstein, J. Org. Chem., 34, 463 (1969); (b) F. J. Choupek and G. Zweifel, ibid., 29, 2092 (1964); (c) R. M. deSousa and R. M. Moriarity, ibid., 30, 1509 (1965); J. F. Biellman and G. Ourisson, Bull. Soc. Chim. Fr., 341 (1962); (d) K. T. Leffek, R. E. Heppolette and R. E. Robertson, Can. J. Chem., 44, 677 (1966); R. E. Robertson, Progr. Phys. Org. Chem., 4, 213 (1967); R. S. Bly and R. Veazey, J. Amer. Chem. Soc., 91, 4221 (1969); (e) R. S. Bly, R. C. Strickland, R. T. Swindell, and R. L. Veazey, ibid., 92, 3722 (1970).
(75) H. M. R. Hoffmann, J. Chem. Soc., 6753,6762 (1965).
(76) The place of OAC is determined by the absence of reaction between 6 OAC and $\mathrm{Bu}_{4} \mathrm{NBr}^{29}$
(77) J. E. Dubois and A. Schwarcz, C. R. Acad. Sci, 259, 2227 (1964); F Freeman and N. J. Yamachika, J. Amer. Chem. Soc., 91, 1483 (1969); H. Marxmeier and E. Pfeil, Justus Liebigs Ann. Chem., 678, 28 (1964).
(78) In the acetolysis of threo- $\mathrm{MeCH}(\mathrm{An}) \mathrm{CH}(\mathrm{OBs}) \mathrm{Me}$ in $\mathrm{Ac}_{2} \mathrm{O}, 97 \%$ of the products is formed from free cations, while. 100% of the products is formed from ion pairs in AcOH .45
79) R. Huisgen, Angew. Chem., Int. Ed. Engl., 9, 751 (1970).
(80) S. Winstein, A. H. Fainberg, and E. Grunwald, J. Amer. Chem. Soc., 79, 4146 (1957).
(81) (a) J. L. Coke, F. E. McFarlane, M. C. Mourning, and M. G. Jones, J. Amer. Chem. Soc., 91, 1154 (1969); M. G. Jones and J. L. Coke, ibid., 91, 4284 (1969); (b) J. P. Hardy, A. Ceccon, A. F. Diaz and S. Winstein, ibid., 94, 1356 (1972); (c) C. J. Kim and H. C. Brown, ibid,, 94, 5051 (1972).
(82) (a) C. D. Ritchie and P. O. I. Virtanen, J. Amer. Chem. Soc., 94, 4966 (1972); (b) C. D. Ritchie, Accounts Chem. Res., 5, 348 (1972).
(83) C. D. Ritchie, J. Amer. Chem. Soc., 93, 7324 (1971).
(84) C. G. Swain and C. B. Scott, J. Amer. Chem. Soc., 75, 141 (1953).
(85) D. D. Roberts, J. Org. Chem., 37, 1510 (1972).
(86) For comments regarding the comparison of the rates of solvolysis of cis-trans pairs as a method for evaluating β-aryl participation, see ref 13.
(87) R. C. Bingham and P. v. R. Schleyer, J. Amer. Chem. Soc., 93, 3189 (1971).
(88) J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M. Harris, R. C. Bingnam, D. J. Raber, R. E. Hall, and P. v. R. Schleyer, J. Amer. Chem. Soc., 92, 2538 (1970).
89) The acetolysis products of $24-\mathrm{Br}$ in $\mathrm{AcOH}-\mathrm{NaOAc}$ are derived from ion pairs. ${ }^{28}$
(90) H. P. Gregor, M. Rothenberg, and N. Fine, J. Phys. Chem., 67, 1110 (1963).

[^0]: ${ }^{a}$ Reference 65. ${ }^{b}$ W. A. Sheppard and R. W. Taft, Jr., J. Amer. Chem. Soc., 94, 1919 (1972), reported $\sigma_{1}(\mathrm{OAc})=0.27, \sigma_{\mathrm{R}^{n}(\mathrm{OAc})}=-0.20$. ${ }^{c}$ Calculated from the relationship $\sigma_{\mathrm{I}}=1.6 \sigma_{\mathrm{m}}-0.55 \sigma_{\mathrm{p}} ; \sigma_{\mathrm{R}}=-1.83 \sigma_{\mathrm{m}}+1.6 \sigma_{\mathrm{p}}$ which is based on the equations derived by O . Exner [Collect. Czech. Chem. Commun.. 31, 65 (1966)] for substituents with at lone electron pair at the α-position. The σ_{m} and the σ_{p} values are from ref 66. ${ }^{d}$ Addition of $\mathrm{CF}_{3} \mathrm{COOH}$ to 2-X-propenes (ref 67). ${ }^{e}$ Bromination of $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{X}) \mathrm{CH}_{2} \mathrm{Cl}$ in $50 \% \mathrm{MeOH}$ (ref 68). ${ }^{\text {/ }}$ Solvolysis and isomerization of 24 in AcOH (ref 10b). The values in the parentheses are upper limits since the solvolysis of $24-\mathrm{Br}$ is SN 1 and that of $24-\mathrm{Cl}$ is via a combination of the $\mathrm{S}_{\mathrm{N}} 1$ and the Ad_{E} routes. ${ }^{a}$ See text for evaluation of the relative rates. ${ }^{h}$ At $120.3^{\circ} .{ }^{i}$ Assuming identical activation energies for ROMs and ROTs.

